BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28490087)

  • 1. Use of FT-IR, FT-Raman and thermal analysis to evaluate the gel formation of curdlan produced by Agrobacterium sp. IFO 13140 and determination of its rheological properties with food applicability.
    Mangolim CS; da Silva TT; Fenelon VC; do Nascimento A; Sato F; Matioli G
    Food Chem; 2017 Oct; 232():369-378. PubMed ID: 28490087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Description of recovery method used for curdlan produced by Agrobacterium sp. IFO 13140 and its relation to the morphology and physicochemical and technological properties of the polysaccharide.
    Mangolim CS; Silva TT; Fenelon VC; Koga LN; Ferreira SB; Bruschi ML; Matioli G
    PLoS One; 2017; 12(2):e0171469. PubMed ID: 28245244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of curdlan produced by Agrobacterium sp. IFO 13140 cells immobilized in a loofa sponge matrix, and application of this biopolymer in the development of functional yogurt.
    Ortiz Martinez C; Pereira Ruiz S; Carvalho Fenelon V; Rodrigues de Morais G; Luciano Baesso M; Matioli G
    J Sci Food Agric; 2016 May; 96(7):2410-7. PubMed ID: 26219432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM.
    Jin Y; Zhang H; Yin Y; Nishinari K
    Carbohydr Res; 2006 Jan; 341(1):90-9. PubMed ID: 16310757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology and gelation of aqueous carboxymethylated curdlan solution: Impact of the degree of substitution.
    Wei Y; Cai Z; Ma A; Zhang H
    Carbohydr Polym; 2024 May; 332():121921. PubMed ID: 38431398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curdlan production from cassava starch hydrolysates by Agrobacterium sp. DH-2.
    Wan J; Shao Z; Jiang D; Gao H; Yang X
    Bioprocess Biosyst Eng; 2022 May; 45(5):969-979. PubMed ID: 35312865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel.
    Wu C; Yuan C; Chen S; Liu D; Ye X; Hu Y
    Food Chem; 2015 Jul; 179():222-31. PubMed ID: 25722158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of curdlan addition and thermal sterilization on the structural and properties of rice starch gel.
    Wang J; Liu Y; Zhao M; Sun Q; Li M; Wang Y; Zhang Y; Xie F
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132593. PubMed ID: 38788865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of the Textural and Gel Properties of Frankfurters by Adding Thermo-reversible or Thermo-irreversible Curdlan Gels.
    Jiang S; Cao CA; Xia XF; Liu Q; Kong BH
    J Food Sci; 2019 May; 84(5):1068-1077. PubMed ID: 30990884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of the rheological and textural properties of calcium sulfate-induced soy protein isolate gels by the incorporation of different polysaccharides.
    Zhao H; Chen J; Hemar Y; Cui B
    Food Chem; 2020 Apr; 310():125983. PubMed ID: 31835225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal gelling properties and structural properties of myofibrillar protein including thermo-reversible and thermo-irreversible curdlan gels.
    Jiang S; Zhao S; Jia X; Wang H; Zhang H; Liu Q; Kong B
    Food Chem; 2020 May; 311():126018. PubMed ID: 31862566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the structure and the transport properties of low-set and high-set curdlan hydrogels.
    Gagnon MA; Lafleur M
    J Colloid Interface Sci; 2011 May; 357(2):419-27. PubMed ID: 21402382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose.
    Shin HD; Liu L; Kim MK; Park YI; Chen R
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1323-31. PubMed ID: 27387419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis.
    Gao H; Xie F; Zhang W; Tian J; Zou C; Jia C; Jin M; Huang J; Chang Z; Yang X; Jiang D
    Carbohydr Polym; 2020 Oct; 245():116486. PubMed ID: 32718606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Premna microphylla turcz polysaccharide on rheological, gelling, and structural properties of mung bean starch and their interactions.
    Fei W; Rong L; Qi X; Chen X; Luo Y; Wen H; Xie J
    Food Res Int; 2024 Aug; 189():114561. PubMed ID: 38876594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological properties, gelling behavior and texture characteristics of polysaccharide from Enteromorpha prolifera.
    Qiao L; Li Y; Chi Y; Ji Y; Gao Y; Hwang H; Aker WG; Wang P
    Carbohydr Polym; 2016 Jan; 136():1307-14. PubMed ID: 26572475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From curdlan powder to the triple helix gel structure: an attenuated total reflection-infrared study of the gelation process.
    Gagnon MA; Lafleur M
    Appl Spectrosc; 2007 Apr; 61(4):374-8. PubMed ID: 17456255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of extracellular water-insoluble polysaccharide from Pseudomonas sp.
    Cui JD; Qiu JQ
    J Agric Food Chem; 2012 May; 60(19):4865-71. PubMed ID: 22533491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curdlan and other bacterial (1-->3)-beta-D-glucans.
    McIntosh M; Stone BA; Stanisich VA
    Appl Microbiol Biotechnol; 2005 Aug; 68(2):163-73. PubMed ID: 15818477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular description of the gelation mechanism of curdlan.
    Zhang H; Nishinari K; Williams MA; Foster TJ; Norton IT
    Int J Biol Macromol; 2002 Mar; 30(1):7-16. PubMed ID: 11893389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.