These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28490177)

  • 21. Efficient transfer of information from hexitol nucleic acids to RNA during nonenzymatic oligomerization.
    Kozlov IA; De Bouvere B; Van Aerschot A; Herdewijn P; Orgel LE
    J Am Chem Soc; 1999; 121(25):5856-9. PubMed ID: 11542282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for TNA synthesis by an engineered TNA polymerase.
    Chim N; Shi C; Sau SP; Nikoomanzar A; Chaput JC
    Nat Commun; 2017 Nov; 8(1):1810. PubMed ID: 29180809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TNA synthesis by DNA polymerases.
    Chaput JC; Szostak JW
    J Am Chem Soc; 2003 Aug; 125(31):9274-5. PubMed ID: 12889939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 3. Incorporation of adenosine and uridine residues.
    Wu T; Orgel LE
    J Am Chem Soc; 1992 Oct; 114(21):7963-9. PubMed ID: 11538876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.
    Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC
    J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incorporation of 2'-deoxy-2'-isonucleoside 5'-triphosphates (iNTPs) into DNA by A- and B-family DNA polymerases with different recognition mechanisms.
    Ogino T; Sato K; Matsuda A
    Chembiochem; 2010 Dec; 11(18):2597-605. PubMed ID: 21108267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of threose nucleoside units on the catalytic activity of a hammerhead ribozyme.
    Kempeneers V; Froeyen M; Vastmans K; Herdewijn P
    Chem Biodivers; 2004 Jan; 1(1):112-23. PubMed ID: 17191779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An in vitro selection system for TNA.
    Ichida JK; Zou K; Horhota A; Yu B; McLaughlin LW; Szostak JW
    J Am Chem Soc; 2005 Mar; 127(9):2802-3. PubMed ID: 15740086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Base-pairing systems related to TNA: alpha-threofuranosyl oligonucleotides containing phosphoramidate linkages.
    Wu X; Guntha S; Ferencic M; Krishnamurthy R; Eschenmoser A
    Org Lett; 2002 Apr; 4(8):1279-82. PubMed ID: 11950342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective Prebiotic Synthesis of α-Threofuranosyl Cytidine by Photochemical Anomerization.
    Colville BWF; Powner MW
    Angew Chem Int Ed Engl; 2021 May; 60(19):10526-10530. PubMed ID: 33644959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generating Biologically Stable TNA Aptamers that Function with High Affinity and Thermal Stability.
    Dunn MR; McCloskey CM; Buckley P; Rhea K; Chaput JC
    J Am Chem Soc; 2020 Apr; 142(17):7721-7724. PubMed ID: 32298104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methoxymethyl Threofuranosyl Thymidine (4'-MOM-TNA-T) at the T7 Position of the Thrombin-Binding Aptamer Boosts Anticoagulation Activity, Thermal Stability, and Nuclease Resistance.
    Varada M; Aher M; Erande N; Kumar VA; Fernandes M
    ACS Omega; 2020 Jan; 5(1):498-506. PubMed ID: 31956796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonenzymatic oligomerization reactions on templates containing inosinic acid or diaminopurine nucleotide residues.
    Kozlov IA; Orgel LE
    Helv Chim Acta; 1999 Nov; 82(11):1799-805. PubMed ID: 11543571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The limits of template-directed synthesis with nucleoside-5'-phosphoro(2-methyl)imidazolides.
    Hill AR; Orgel LE; Wu T
    Orig Life Evol Biosph; 1993 Dec; 23(5-6):285-90. PubMed ID: 8115162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reading and Writing Digital Information in TNA.
    Yang K; McCloskey CM; Chaput JC
    ACS Synth Biol; 2020 Nov; 9(11):2936-2942. PubMed ID: 32966745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and Polymerase Recognition of Threose Nucleic Acid Triphosphates Equipped with Diverse Chemical Functionalities.
    Li Q; Maola VA; Chim N; Hussain J; Lozoya-Colinas A; Chaput JC
    J Am Chem Soc; 2021 Oct; 143(42):17761-17768. PubMed ID: 34637287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and polymerase activity of a fluorescent cytidine TNA triphosphate analogue.
    Mei H; Shi C; Jimenez RM; Wang Y; Kardouh M; Chaput JC
    Nucleic Acids Res; 2017 Jun; 45(10):5629-5638. PubMed ID: 28472363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A parallel stranded G-quadruplex composed of threose nucleic acid (TNA).
    Liao JY; Anosova I; Bala S; Van Horn WD; Chaput JC
    Biopolymers; 2017 Mar; 107(3):. PubMed ID: 27718227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonenzymatic oligomerization of activated nucleotides on hairpin templates.
    Kim EK; Switzer C
    Curr Protoc Nucleic Acid Chem; 2009 Dec; Chapter 3():Unit3.18. PubMed ID: 20013784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prebiotic synthesis and triphosphorylation of 3'-amino-TNA nucleosides.
    Whitaker D; Powner MW
    Nat Chem; 2022 Jul; 14(7):766-774. PubMed ID: 35778563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.