BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 28490543)

  • 1. Molecular Regulation of Exercise-Induced Muscle Fiber Hypertrophy.
    Bamman MM; Roberts BM; Adams GR
    Cold Spring Harb Perspect Med; 2018 Jun; 8(6):. PubMed ID: 28490543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosome biogenesis may augment resistance training-induced myofiber hypertrophy and is required for myotube growth in vitro.
    Stec MJ; Kelly NA; Many GM; Windham ST; Tuggle SC; Bamman MM
    Am J Physiol Endocrinol Metab; 2016 Apr; 310(8):E652-E661. PubMed ID: 26860985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy.
    Gonzalez AM; Hoffman JR; Stout JR; Fukuda DH; Willoughby DS
    Sports Med; 2016 May; 46(5):671-85. PubMed ID: 26666743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle hypertrophy after aerobic exercise training.
    Konopka AR; Harber MP
    Exerc Sport Sci Rev; 2014 Apr; 42(2):53-61. PubMed ID: 24508740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults.
    Moro T; Brightwell CR; Volpi E; Rasmussen BB; Fry CS
    J Appl Physiol (1985); 2020 Apr; 128(4):795-804. PubMed ID: 32134710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise.
    Figueiredo VC
    Am J Physiol Regul Integr Comp Physiol; 2019 Nov; 317(5):R709-R718. PubMed ID: 31508978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type 2 diabetes causes skeletal muscle atrophy but does not impair resistance training-mediated myonuclear accretion and muscle mass gain in rats.
    Ato S; Kido K; Sato K; Fujita S
    Exp Physiol; 2019 Oct; 104(10):1518-1531. PubMed ID: 31328833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables.
    Fyfe JJ; Bishop DJ; Stepto NK
    Sports Med; 2014 Jun; 44(6):743-62. PubMed ID: 24728927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical pulse stimulation: an in vitro exercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study.
    Tarum J; Folkesson M; Atherton PJ; Kadi F
    Exp Physiol; 2017 Nov; 102(11):1405-1413. PubMed ID: 28861930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low skeletal muscle capillarization limits muscle adaptation to resistance exercise training in older adults.
    Moro T; Brightwell CR; Phalen DE; McKenna CF; Lane SJ; Porter C; Volpi E; Rasmussen BB; Fry CS
    Exp Gerontol; 2019 Nov; 127():110723. PubMed ID: 31518665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A focused review of myokines as a potential contributor to muscle hypertrophy from resistance-based exercise.
    Cornish SM; Bugera EM; Duhamel TA; Peeler JD; Anderson JE
    Eur J Appl Physiol; 2020 May; 120(5):941-959. PubMed ID: 32144492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy.
    Figueiredo VC; Caldow MK; Massie V; Markworth JF; Cameron-Smith D; Blazevich AJ
    Am J Physiol Endocrinol Metab; 2015 Jul; 309(1):E72-83. PubMed ID: 25968575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans.
    Joanisse S; Lim C; McKendry J; Mcleod JC; Stokes T; Phillips SM
    F1000Res; 2020; 9():. PubMed ID: 32148775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular and molecular events controlling skeletal muscle mass in response to altered use.
    Favier FB; Benoit H; Freyssenet D
    Pflugers Arch; 2008 Jun; 456(3):587-600. PubMed ID: 18193272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy.
    Lim C; Nunes EA; Currier BS; McLeod JC; Thomas ACQ; Phillips SM
    Med Sci Sports Exerc; 2022 Sep; 54(9):1546-1559. PubMed ID: 35389932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early accentuated muscle hypertrophy is strongly associated with myonuclear accretion.
    Lundberg TR; Martínez-Aranda LM; Sanz G; Hansson B; von Walden F; Tesch PA; Fernandez-Gonzalo R
    Am J Physiol Regul Integr Comp Physiol; 2020 Jul; 319(1):R50-R58. PubMed ID: 32432913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular stressors underlying exercise training-induced improvements in K
    Christiansen D
    Acta Physiol (Oxf); 2019 Mar; 225(3):e13196. PubMed ID: 30288889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function.
    Watt KI; Goodman CA; Hornberger TA; Gregorevic P
    Exerc Sport Sci Rev; 2018 Apr; 46(2):92-96. PubMed ID: 29346163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle.
    Shamim B; Hawley JA; Camera DM
    Sports Med; 2018 Jun; 48(6):1329-1343. PubMed ID: 29557519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.