These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 28490643)

  • 1. Predicting the response of striatal spiny neurons to sinusoidal input.
    Wilson CJ
    J Neurophysiol; 2017 Aug; 118(2):855-873. PubMed ID: 28490643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-dependent entrainment of striatal fast-spiking interneurons.
    Higgs MH; Wilson CJ
    J Neurophysiol; 2019 Sep; 122(3):1060-1072. PubMed ID: 31314645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the responses of repetitively firing neurons to current noise.
    Wilson CJ; Barraza D; Troyer T; Farries MA
    PLoS Comput Biol; 2014 May; 10(5):e1003612. PubMed ID: 24809636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting responses to inhibitory synaptic input in substantia nigra pars reticulata neurons.
    Simmons DV; Higgs MH; Lebby S; Wilson CJ
    J Neurophysiol; 2018 Nov; 120(5):2679-2693. PubMed ID: 30207859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband Entrainment of Striatal Low-Threshold Spike Interneurons.
    Morales JC; Higgs MH; Song SC; Wilson CJ
    Front Neural Circuits; 2020; 14():36. PubMed ID: 32655378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
    Doose J; Doron G; Brecht M; Lindner B
    J Neurosci; 2016 Oct; 36(43):11120-11132. PubMed ID: 27798191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-response approach to firing-rate selectivity in neurons with subthreshold oscillations.
    Sancristóbal B; Sancho JM; Garcia-Ojalvo J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041908. PubMed ID: 21230314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation of temporal features of complex sounds by the discharge patterns of neurons in the owl's inferior colliculus.
    Keller CH; Takahashi TT
    J Neurophysiol; 2000 Nov; 84(5):2638-50. PubMed ID: 11068005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of reliability of spike timing in spinal interneurons during oscillating inputs.
    Beierholm U; Nielsen CD; Ryge J; Alstrøm P; Kiehn O
    J Neurophysiol; 2001 Oct; 86(4):1858-68. PubMed ID: 11600645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo.
    Stern EA; Kincaid AE; Wilson CJ
    J Neurophysiol; 1997 Apr; 77(4):1697-715. PubMed ID: 9114230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved method for the estimation of firing rate dynamics using an optimal digital filter.
    Cherif S; Cullen KE; Galiana HL
    J Neurosci Methods; 2008 Aug; 173(1):165-81. PubMed ID: 18577401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-type-specific resonances shape the responses of striatal neurons to synaptic input.
    Beatty JA; Song SC; Wilson CJ
    J Neurophysiol; 2015 Feb; 113(3):688-700. PubMed ID: 25411465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive firing in layer V neurons from cat neocortex in vitro.
    Stafstrom CE; Schwindt PC; Crill WE
    J Neurophysiol; 1984 Aug; 52(2):264-77. PubMed ID: 6481432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct mechanisms shape the reliability of neural responses.
    Schreiber S; Samengo I; Herz AV
    J Neurophysiol; 2009 May; 101(5):2239-51. PubMed ID: 19193775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhythm-induced spike-timing patterns characterized by 1D firing maps.
    Engelbrecht JR; Loncich K; Mirollo R; Hasselmo ME; Yoshida M
    J Comput Neurosci; 2013 Feb; 34(1):59-71. PubMed ID: 22820851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents.
    Rauch A; La Camera G; Luscher HR; Senn W; Fusi S
    J Neurophysiol; 2003 Sep; 90(3):1598-612. PubMed ID: 12750422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas.
    Tiesinga PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031912. PubMed ID: 15089327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical models of cochlear nucleus onset neurons: II. model with dynamic spike-blocking state.
    Kalluri S; Delgutte B
    J Comput Neurosci; 2003; 14(1):91-110. PubMed ID: 12435926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic unitary synaptic currents in the mouse globus pallidus during spontaneous firing in slices.
    Higgs MH; Jones JA; Chan CS; Wilson CJ
    J Neurophysiol; 2021 Apr; 125(4):1482-1500. PubMed ID: 33729831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.