BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28490659)

  • 41. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia.
    Tonks A; Pearn L; Musson M; Gilkes A; Mills KI; Burnett AK; Darley RL
    Leukemia; 2007 Dec; 21(12):2495-505. PubMed ID: 17898786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perspectives on RUNX genes: an update.
    Cohen MM
    Am J Med Genet A; 2009 Dec; 149A(12):2629-46. PubMed ID: 19830829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel loss-of-function mutations of the haematopoiesis-related transcription factor, acute myeloid leukaemia 1/runt-related transcription factor 1, detected in acute myeloblastic leukaemia and myelodysplastic syndrome.
    Nakao M; Horiike S; Fukushima-Nakase Y; Nishimura M; Fujita Y; Taniwaki M; Okuda T
    Br J Haematol; 2004 Jun; 125(6):709-19. PubMed ID: 15180860
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Runx1 Structure and Function in Blood Cell Development.
    Bonifer C; Levantini E; Kouskoff V; Lacaud G
    Adv Exp Med Biol; 2017; 962():65-81. PubMed ID: 28299651
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hematopoietic stem cell fate is established by the Notch-Runx pathway.
    Burns CE; Traver D; Mayhall E; Shepard JL; Zon LI
    Genes Dev; 2005 Oct; 19(19):2331-42. PubMed ID: 16166372
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The RUNX genes: gain or loss of function in cancer.
    Blyth K; Cameron ER; Neil JC
    Nat Rev Cancer; 2005 May; 5(5):376-87. PubMed ID: 15864279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Different mutant RUNX1 oncoproteins program alternate haematopoietic differentiation trajectories.
    Kellaway SG; Keane P; Edginton-White B; Regha K; Kennett E; Bonifer C
    Life Sci Alliance; 2021 Feb; 4(2):. PubMed ID: 33397648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells.
    Kitoh A; Ono M; Naoe Y; Ohkura N; Yamaguchi T; Yaguchi H; Kitabayashi I; Tsukada T; Nomura T; Miyachi Y; Taniuchi I; Sakaguchi S
    Immunity; 2009 Oct; 31(4):609-20. PubMed ID: 19800266
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of Runx1/AML1 and Evi-1 in the regulation of hematopoietic stem cells.
    Kumano K; Kurokawa M
    J Cell Physiol; 2010 Feb; 222(2):282-5. PubMed ID: 19847803
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Roles of RUNX in B Cell Immortalisation.
    West MJ; Farrell PJ
    Adv Exp Med Biol; 2017; 962():283-298. PubMed ID: 28299664
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.
    Osorio KM; Lee SE; McDermitt DJ; Waghmare SK; Zhang YV; Woo HN; Tumbar T
    Development; 2008 Mar; 135(6):1059-68. PubMed ID: 18256199
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association of core-binding factor β with the malignant phenotype of prostate and ovarian cancer cells.
    Davis JN; Rogers D; Adams L; Yong T; Jung JS; Cheng B; Fennell K; Borazanci E; Moustafa YW; Sun A; Shi R; Glass J; Mathis JM; Williams BJ; Meyers S
    J Cell Physiol; 2010 Nov; 225(3):875-87. PubMed ID: 20607802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Loss of RUNX1 is associated with aggressive lung adenocarcinomas.
    Ramsey J; Butnor K; Peng Z; Leclair T; van der Velden J; Stein G; Lian J; Kinsey CM
    J Cell Physiol; 2018 Apr; 233(4):3487-3497. PubMed ID: 28926105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Runx family genes, niche, and stem cell quiescence.
    Wang CQ; Jacob B; Nah GS; Osato M
    Blood Cells Mol Dis; 2010 Apr; 44(4):275-86. PubMed ID: 20144877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subnuclear targeting of Runx1 is required for synergistic activation of the myeloid specific M-CSF receptor promoter by PU.1.
    Li X; Vradii D; Gutierrez S; Lian JB; van Wijnen AJ; Stein JL; Stein GS; Javed A
    J Cell Biochem; 2005 Nov; 96(4):795-809. PubMed ID: 16149049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation.
    Sokol ES; Sanduja S; Jin DX; Miller DH; Mathis RA; Gupta PB
    PLoS Comput Biol; 2015 Apr; 11(4):e1004161. PubMed ID: 25894653
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Runx1 is a tumor suppressor gene in the mouse gastrointestinal tract.
    Fijneman RJ; Anderson RA; Richards E; Liu J; Tijssen M; Meijer GA; Anderson J; Rod A; O'Sullivan MG; Scott PM; Cormier RT
    Cancer Sci; 2012 Mar; 103(3):593-9. PubMed ID: 22171576
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coordinate regulation of cell growth and differentiation by TGF-beta superfamily and Runx proteins.
    Miyazono K; Maeda S; Imamura T
    Oncogene; 2004 May; 23(24):4232-7. PubMed ID: 15156178
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcriptional Regulation of
    Thomas AL; Marsman J; Antony J; Schierding W; O'Sullivan JM; Horsfield JA
    Genes (Basel); 2021 Jul; 12(8):. PubMed ID: 34440349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression of AML/Runx and ETO/MTG family members during hematopoietic differentiation of embryonic stem cells.
    Okumura AJ; Peterson LF; Lo MC; Zhang DE
    Exp Hematol; 2007 Jun; 35(6):978-88. PubMed ID: 17533052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.