These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

719 related articles for article (PubMed ID: 28490665)

  • 1. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy.
    Arlauckas SP; Garris CS; Kohler RH; Kitaoka M; Cuccarese MF; Yang KS; Miller MA; Carlson JC; Freeman GJ; Anthony RM; Weissleder R; Pittet MJ
    Sci Transl Med; 2017 May; 9(389):. PubMed ID: 28490665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments.
    Moreno-Vicente J; Willoughby JE; Taylor MC; Booth SG; English VL; Williams EL; Penfold CA; Mockridge CI; Inzhelevskaya T; Kim J; Chan HTC; Cragg MS; Gray JC; Beers SA
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35017153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors.
    Arce Vargas F; Furness AJS; Solomon I; Joshi K; Mekkaoui L; Lesko MH; Miranda Rota E; Dahan R; Georgiou A; Sledzinska A; Ben Aissa A; Franz D; Werner Sunderland M; Wong YNS; Henry JY; O'Brien T; Nicol D; Challacombe B; Beers SA; ; ; ; Turajlic S; Gore M; Larkin J; Swanton C; Chester KA; Pule M; Ravetch JV; Marafioti T; Peggs KS; Quezada SA
    Immunity; 2017 Apr; 46(4):577-586. PubMed ID: 28410988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy.
    Li L; Miao Q; Meng F; Li B; Xue T; Fang T; Zhang Z; Zhang J; Ye X; Kang Y; Zhang X; Chen Q; Liang X; Chen H; Zhang X
    Theranostics; 2021; 11(12):6033-6043. PubMed ID: 33897897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fc glycoengineering of a PD-L1 antibody harnesses Fcγ receptors for increased antitumor efficacy.
    Cohen Saban N; Yalin A; Landsberger T; Salomon R; Alva A; Feferman T; Amit I; Dahan R
    Sci Immunol; 2023 Mar; 8(81):eadd8005. PubMed ID: 36867679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FcγR-Binding Is an Important Functional Attribute for Immune Checkpoint Antibodies in Cancer Immunotherapy.
    Chen X; Song X; Li K; Zhang T
    Front Immunol; 2019; 10():292. PubMed ID: 30863404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poor outcome with anti-programmed death-ligand 1 (PD-L1) antibody due to poor pharmacokinetic properties in PD-1/PD-L1 blockade-sensitive mouse models.
    Kurino T; Matsuda R; Terui A; Suzuki H; Kokubo T; Uehara T; Arano Y; Hisaka A; Hatakeyama H
    J Immunother Cancer; 2020 Feb; 8(1):. PubMed ID: 32041818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Anti-tumor Response by TIGIT Blockade Associated With FcγR Engagement and Myeloid Cell Activation.
    Han JH; Cai M; Grein J; Perera S; Wang H; Bigler M; Ueda R; Rosahl TW; Pinheiro E; LaFace D; Seghezzi W; Williams SMG
    Front Immunol; 2020; 11():573405. PubMed ID: 33117369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
    Allard B; Pommey S; Smyth MJ; Stagg J
    Clin Cancer Res; 2013 Oct; 19(20):5626-35. PubMed ID: 23983257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment.
    Hardcastle J; Mills L; Malo CS; Jin F; Kurokawa C; Geekiyanage H; Schroeder M; Sarkaria J; Johnson AJ; Galanis E
    Neuro Oncol; 2017 Apr; 19(4):493-502. PubMed ID: 27663389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective FcγR Co-engagement on APCs Modulates the Activity of Therapeutic Antibodies Targeting T Cell Antigens.
    Waight JD; Chand D; Dietrich S; Gombos R; Horn T; Gonzalez AM; Manrique M; Swiech L; Morin B; Brittsan C; Tanne A; Akpeng B; Croker BA; Buell JS; Stein R; Savitsky DA; Wilson NS
    Cancer Cell; 2018 Jun; 33(6):1033-1047.e5. PubMed ID: 29894690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunotherapy targeting inhibitory Fcγ receptor IIB (CD32b) in the mouse is limited by monoclonal antibody consumption and receptor internalization.
    Williams EL; Tutt AL; Beers SA; French RR; Chan CH; Cox KL; Roghanian A; Penfold CA; Butts CL; Boross P; Verbeek JS; Cragg MS; Glennie MJ
    J Immunol; 2013 Oct; 191(8):4130-40. PubMed ID: 24026082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycosylation-independent binding of monoclonal antibody toripalimab to FG loop of PD-1 for tumor immune checkpoint therapy.
    Liu H; Guo L; Zhang J; Zhou Y; Zhou J; Yao J; Wu H; Yao S; Chen B; Chai Y; Qi J; Gao GF; Tan S; Feng H; Yan J
    MAbs; 2019; 11(4):681-690. PubMed ID: 30892132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FcγRs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis.
    Dahan R; Sega E; Engelhardt J; Selby M; Korman AJ; Ravetch JV
    Cancer Cell; 2015 Sep; 28(3):285-95. PubMed ID: 26373277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An agonistic anti-Toll-like receptor 4 monoclonal antibody as an effective adjuvant for cancer immunotherapy.
    Tsukamoto H; Kubota K; Shichiku A; Maekawa M; Mano N; Yagita H; Ohta S; Tomioka Y
    Immunology; 2019 Oct; 158(2):136-149. PubMed ID: 31515801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses.
    Beavis PA; Milenkovski N; Henderson MA; John LB; Allard B; Loi S; Kershaw MH; Stagg J; Darcy PK
    Cancer Immunol Res; 2015 May; 3(5):506-17. PubMed ID: 25672397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune-Checkpoint Blockade Opposes CD8
    Pfannenstiel LW; Diaz-Montero CM; Tian YF; Scharpf J; Ko JS; Gastman BR
    Cancer Immunol Res; 2019 Mar; 7(3):510-525. PubMed ID: 30728151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1
    Kurtulus S; Madi A; Escobar G; Klapholz M; Nyman J; Christian E; Pawlak M; Dionne D; Xia J; Rozenblatt-Rosen O; Kuchroo VK; Regev A; Anderson AC
    Immunity; 2019 Jan; 50(1):181-194.e6. PubMed ID: 30635236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma.
    Antonios JP; Soto H; Everson RG; Moughon D; Orpilla JR; Shin NP; Sedighim S; Treger J; Odesa S; Tucker A; Yong WH; Li G; Cloughesy TF; Liau LM; Prins RM
    Neuro Oncol; 2017 Jun; 19(6):796-807. PubMed ID: 28115578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors.
    Stavenhagen JB; Gorlatov S; Tuaillon N; Rankin CT; Li H; Burke S; Huang L; Vijh S; Johnson S; Bonvini E; Koenig S
    Cancer Res; 2007 Sep; 67(18):8882-90. PubMed ID: 17875730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.