These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 28490800)

  • 1. The formation mechanism of tear strips on stretched Ti-22Al-25Nb alloy sheets.
    Zong Y; Shao B; Xu W; Guo B; Shan D
    Sci Rep; 2017 May; 7(1):1645. PubMed ID: 28490800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy.
    Wang Y; Lu Z; Zhang K; Zhang D
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure, Tensile, and Creep Behaviors of Ti-22Al-25Nb (at.%) Orthorhombic Alloy with Equiaxed Microstructure.
    Wang W; Zeng W; Sun Y; Zhou H; Liang X
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30036934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Cycle Fatigue Behavior and the Combined Cyclic Hardening Material Model of Plate-Shaped Zn-22Al Alloy for Seismic Dampers.
    Liu Z; Han J; Yang P
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-phase-dependent grain refinement in Ti-25Nb-3Mo-3Zr-2Sn alloy and its enhanced osteoblast response.
    Huang R; Zhuang H; Han Y
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():144-52. PubMed ID: 24411362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy.
    Yu S; Yu Z; Wang G; Han J; Ma X; Dargusch MS
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):103-15. PubMed ID: 21439798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure Evolution of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y Alloy during Long-Term Thermal Exposure.
    Chen Z; Cai Z; Jiang X; Chen S; Huang Z; Sun H
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32252227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part II: Experimental TEM Study of Microstructures.
    Bendersky LA; Boettinger WJ
    J Res Natl Inst Stand Technol; 1993; 98(5):585-606. PubMed ID: 28053488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A surface reacted layer study of titanium-zirconium alloy after dental casting].
    Zhang Y; Guo T; Li Z; Li C
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Oct; 18(5):294-7. PubMed ID: 12539643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Ringer's solution.
    Wang Z; Huang W; Li Y; He H; Zhou Y; Zheng Z
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1094-1102. PubMed ID: 28482473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comporison Sduty of Microstructure by Metallographicalk on the Polarized Light and Texture by XRD of CC 5083 and CC 5182 Aluminium Alloy after Cold Rolling and Recrystallization].
    Chen MB; Li YW; Tan YB; Ma M; Wang XM; Liu WC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):814-9. PubMed ID: 26117903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblast cell behavior on the new beta-type Ti-25Ta-25Nb alloy.
    Cimpean A; Mitran V; Ciofrangeanu CM; Galateanu B; Bertrand E; Gordin DM; Iordachescu D; Gloriant T
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1554-63. PubMed ID: 24364960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.
    Wang Z; Li Y; Huang W; Chen X; He H
    J Mech Behav Biomed Mater; 2016 Oct; 63():361-374. PubMed ID: 27450038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.
    Kim JS; Lee DH; Jung SP; Lee KS; Kim KJ; Kim HS; Lee BJ; Chang YW; Yuh J; Lee S
    Sci Rep; 2016 Jun; 6():26333. PubMed ID: 27245687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti-25Nb-3Mo-3Zr-2Sn alloy.
    Huang R; Han Y
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2353-9. PubMed ID: 23498269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications.
    Guo S; Meng QK; Cheng XN; Zhao XQ
    J Mech Behav Biomed Mater; 2014 Oct; 38():26-32. PubMed ID: 25011015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy.
    Nolan M; Tofail SA
    Biomaterials; 2010 May; 31(13):3439-48. PubMed ID: 20144474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy.
    Huang R; Lu S; Han Y
    Colloids Surf B Biointerfaces; 2013 Nov; 111():232-41. PubMed ID: 23831591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Experimental study on the corrosion behavior of a type of oral near β-type titanium alloys modified with double glow plasma nitriding].
    Wen K; Li F
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2015 Dec; 50(12):751-4. PubMed ID: 26887401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterisation of a new superelastic Ti-25Ta-25Nb biomedical alloy.
    Bertrand E; Gloriant T; Gordin DM; Vasilescu E; Drob P; Vasilescu C; Drob SI
    J Mech Behav Biomed Mater; 2010 Nov; 3(8):559-64. PubMed ID: 20826361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.