These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 28492182)

  • 1. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation.
    Zhang Z; Hu S; Chen J; Li B
    Nanotechnology; 2017 Jun; 28(22):225704. PubMed ID: 28492182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride.
    Choi D; Poudel N; Park S; Akinwande D; Cronin SB; Watanabe K; Taniguchi T; Yao Z; Shi L
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11101-11107. PubMed ID: 29528211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature thermal management with boron nitride nanosheets.
    Wang Y; Xu L; Yang Z; Xie H; Jiang P; Dai J; Luo W; Yao Y; Hitz E; Yang R; Yang B; Hu L
    Nanoscale; 2017 Dec; 10(1):167-173. PubMed ID: 29199302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Conductance of the 2D MoS
    Liu Y; Ong ZY; Wu J; Zhao Y; Watanabe K; Taniguchi T; Chi D; Zhang G; Thong JT; Qiu CW; Hippalgaonkar K
    Sci Rep; 2017 Mar; 7():43886. PubMed ID: 28262778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene.
    Chen J; Zhang G; Li B
    Nanoscale; 2013 Jan; 5(2):532-6. PubMed ID: 23223896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene p-n junctions.
    Xu H; Wu J; Chen Y; Zhang H; Zhang J
    Chem Asian J; 2013 Oct; 8(10):2446-52. PubMed ID: 23840025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure.
    Wang L; Chen Z; Dean CR; Taniguchi T; Watanabe K; Brus LE; Hone J
    ACS Nano; 2012 Oct; 6(10):9314-9. PubMed ID: 23009029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier scattering in quasi-free standing graphene on hexagonal boron nitride.
    Kim SJ; Park B; Noh SH; Yoon HS; Oh J; Yoo S; Kang K; Han B; Jun SC
    Nanoscale; 2017 Oct; 9(41):15934-15944. PubMed ID: 29019503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron nitride substrates for high-quality graphene electronics.
    Dean CR; Young AF; Meric I; Lee C; Wang L; Sorgenfrei S; Watanabe K; Taniguchi T; Kim P; Shepard KL; Hone J
    Nat Nanotechnol; 2010 Oct; 5(10):722-6. PubMed ID: 20729834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior thermal conductivity in suspended bilayer hexagonal boron nitride.
    Wang C; Guo J; Dong L; Aiyiti A; Xu X; Li B
    Sci Rep; 2016 May; 6():25334. PubMed ID: 27142571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride.
    Jo I; Pettes MT; Kim J; Watanabe K; Taniguchi T; Yao Z; Shi L
    Nano Lett; 2013 Feb; 13(2):550-4. PubMed ID: 23346863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Layer Deposition of Layered Boron Nitride for Large-Area 2D Electronics.
    Lee J; Ravichandran AV; Mohan J; Cheng L; Lucero AT; Zhu H; Che Z; Catalano M; Kim MJ; Wallace RM; Venugopal A; Choi W; Colombo L; Kim J
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36688-36694. PubMed ID: 32667778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene and 2D Hexagonal Boron Nitride Heterostructure for Thermal Management in Actively Tunable Manner.
    Sun H; Jiang Y; Hua R; Huang R; Shi L; Dong Y; Liang S; Ni J; Zhang C; Dong R; Song Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient heat dissipation of photonic crystal microcavity by monolayer graphene.
    Shih MH; Li LJ; Yang YC; Chou HY; Lin CT; Su CY
    ACS Nano; 2013 Dec; 7(12):10818-24. PubMed ID: 24224797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial thermal conductance between atomically thin boron nitride and graphene.
    Yu QV; Watanabe K; Taniguchi T; Li LH
    Nanoscale; 2022 Dec; 15(1):122-126. PubMed ID: 36504234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Thermal Transport of Hexagonal Boron Nitride/Reduced Graphene Oxide Heterostructures.
    Chen SN; Liu XS; Luo RH; Xu EZ; Tian JG; Liu ZB
    ACS Appl Mater Interfaces; 2022 May; 14(19):22626-22633. PubMed ID: 35522991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Wu X; Han Q
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32564-32578. PubMed ID: 34196535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimensional dependence of phonon transport in freestanding atomic layer systems.
    Kim D; Hwangbo Y; Zhu L; Mag-Isa AE; Kim KS; Kim JH
    Nanoscale; 2013 Dec; 5(23):11870-5. PubMed ID: 24126813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length-dependent thermal conductivity in suspended single-layer graphene.
    Xu X; Pereira LF; Wang Y; Wu J; Zhang K; Zhao X; Bae S; Tinh Bui C; Xie R; Thong JT; Hong BH; Loh KP; Donadio D; Li B; Özyilmaz B
    Nat Commun; 2014 Apr; 5():3689. PubMed ID: 24736666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.