These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28492687)

  • 41. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy.
    Holland GP; Creager MS; Jenkins JE; Lewis RV; Yarger JL
    J Am Chem Soc; 2008 Jul; 130(30):9871-7. PubMed ID: 18593157
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Packing Structure of Antiparallel β-Sheet Polyalanine Region in a Sequential Model Peptide of
    Asakura T; Nishimura A; Aoki A; Naito A
    Biomacromolecules; 2019 Oct; 20(10):3884-3894. PubMed ID: 31449407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence from 13C solid-state NMR spectroscopy for a lamella structure in an alanine-glycine copolypeptide: a model for the crystalline domain of Bombyx mori silk fiber.
    Asakura T; Nakazawa Y; Ohnishi E; Moro F
    Protein Sci; 2005 Oct; 14(10):2654-7. PubMed ID: 16195552
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the processed silk fiber (silk II) from Bombyx mori using solid-state (13)C,(15)N, and (2)H NMR.
    Asakura T; Sugino R; Yao J; Takashima H; Kishore R
    Biochemistry; 2002 Apr; 41(13):4415-24. PubMed ID: 11914089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm Samia ricini.
    Pal S; Kundu J; Talukdar S; Thomas T; Kundu SC
    Macromol Biosci; 2013 Aug; 13(8):1020-35. PubMed ID: 23733347
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determining dihedral angles and local structure in silk peptide by 13C-2H REDOR.
    Gullion T; Kishore R; Asakura T
    J Am Chem Soc; 2003 Jun; 125(25):7510-1. PubMed ID: 12812479
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Silklike materials constructed from sequences of Bombyx mori silk fibroin, fibronectin, and elastin.
    Yang M; Tanaka C; Yamauchi K; Ohgo K; Kurokawa M; Asakura T
    J Biomed Mater Res A; 2008 Feb; 84(2):353-63. PubMed ID: 17618489
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of intermolecular distance for a model peptide of Bombyx mori silk fibroin, GAGAG, with rotational echo double resonance.
    Kameda T; Nakazawa Y; Kazuhara J; Yamane T; Asakura T
    Biopolymers; 2002 Jul; 64(2):80-5. PubMed ID: 11979518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy.
    Lefèvre T; Rousseau ME; Pézolet M
    Biophys J; 2007 Apr; 92(8):2885-95. PubMed ID: 17277183
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fibroin silk proteins from the nonmulberry silkworm Philosamia ricini are biochemically and immunochemically distinct from those of the mulberry silkworm Bombyx mori.
    Ahmad R; Kamra A; Hasnain SE
    DNA Cell Biol; 2004 Mar; 23(3):149-54. PubMed ID: 15068584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of Silk I (
    Asakura T
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34204550
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR.
    Zhou P; Xie X; Knight DP; Zong XH; Deng F; Yao WH
    Biochemistry; 2004 Sep; 43(35):11302-11. PubMed ID: 15366940
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vibrational infrared conformational studies of model peptides representing the semicrystalline domains of Bombyx mori silk fibroin.
    Taddei P; Monti P
    Biopolymers; 2005 Aug; 78(5):249-58. PubMed ID: 15800959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Raman study of poly(alanine-glycine)-based peptides containing tyrosine, valine, and serine as model for the semicrystalline domains of Bombyx mori silk fibroin.
    Taddei P; Asakura T; Yao J; Monti P
    Biopolymers; 2004 Nov; 75(4):314-24. PubMed ID: 15386264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conformational energy studies of beta-sheets of model silk fibroin peptides. I. Sheets of poly(Ala-Gly) chains.
    Fossey SA; Némethy G; Gibson KD; Scheraga HA
    Biopolymers; 1991 Nov; 31(13):1529-41. PubMed ID: 1814502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acetylation of Bombyx mori silk fibroin and their characterization in the dry and hydrated states using
    Asakura T; Matsuda H; Naito A
    Int J Biol Macromol; 2020 Jul; 155():1410-1419. PubMed ID: 31734374
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers.
    Pérez-Rigueiro J; Madurga R; Gañán-Calvo AM; Elices M; Guinea GV; Tasei Y; Nishimura A; Matsuda H; Asakura T
    Sci Rep; 2019 Feb; 9(1):2398. PubMed ID: 30787337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward Understanding the Silk Fiber Structure:
    Asakura T; Okonogi M; Naito A
    J Phys Chem B; 2019 Aug; 123(31):6716-6727. PubMed ID: 31304756
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy.
    Asakura T; Yao J; Yamane T; Umemura K; Ulrich AS
    J Am Chem Soc; 2002 Jul; 124(30):8794-5. PubMed ID: 12137522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system.
    Zhao C; Yao J; Masuda H; Kishore R; Asakura T
    Biopolymers; 2003 Jun; 69(2):253-9. PubMed ID: 12767126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.