BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 28492966)

  • 1. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish.
    Guo B
    J Mol Evol; 2017 Jun; 84(5-6):253-258. PubMed ID: 28492966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.
    Voldoire E; Brunet F; Naville M; Volff JN; Galiana D
    PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of pigment synthesis pathways by gene and genome duplication in fish.
    Braasch I; Schartl M; Volff JN
    BMC Evol Biol; 2007 May; 7():74. PubMed ID: 17498288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.
    Venkatachalam AB; Parmar MB; Wright JM
    Mol Genet Genomics; 2017 Aug; 292(4):699-727. PubMed ID: 28389698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pigmentation pathway evolution after whole-genome duplication in fish.
    Braasch I; Brunet F; Volff JN; Schartl M
    Genome Biol Evol; 2009 Nov; 1():479-93. PubMed ID: 20333216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?
    Douard V; Brunet F; Boussau B; Ahrens-Fath I; Vlaeminck-Guillem V; Haendler B; Laudet V; Guiguen Y
    BMC Evol Biol; 2008 Dec; 8():336. PubMed ID: 19094205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.
    Rohmann KN; Deitcher DL; Bass AH
    Mol Biol Evol; 2009 Jul; 26(7):1509-21. PubMed ID: 19321796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pervasive indels and their evolutionary dynamics after the fish-specific genome duplication.
    Guo B; Zou M; Wagner A
    Mol Biol Evol; 2012 Oct; 29(10):3005-22. PubMed ID: 22490820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.
    Parmar MB; Wright JM
    Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.
    Lu J; Peatman E; Tang H; Lewis J; Liu Z
    BMC Genomics; 2012 Jun; 13():246. PubMed ID: 22702965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapidly evolving fish genomes and teleost diversity.
    Ravi V; Venkatesh B
    Curr Opin Genet Dev; 2008 Dec; 18(6):544-50. PubMed ID: 19095434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish.
    Hoegg S; Brinkmann H; Taylor JS; Meyer A
    J Mol Evol; 2004 Aug; 59(2):190-203. PubMed ID: 15486693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes.
    Brunet FG; Roest Crollius H; Paris M; Aury JM; Gibert P; Jaillon O; Laudet V; Robinson-Rechavi M
    Mol Biol Evol; 2006 Sep; 23(9):1808-16. PubMed ID: 16809621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid-binding protein genes of the ancient, air-breathing, ray-finned fish, spotted gar (Lepisosteus oculatus).
    Venkatachalam AB; Fontenot Q; Farrara A; Wright JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Mar; 25():19-25. PubMed ID: 29126085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-genome duplication and the functional diversification of teleost fish hemoglobins.
    Opazo JC; Butts GT; Nery MF; Storz JF; Hoffmann FG
    Mol Biol Evol; 2013 Jan; 30(1):140-53. PubMed ID: 22949522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Molecular Evolution of Circadian Clock Genes in Spotted Gar (
    Sun Y; Liu C; Huang M; Huang J; Liu C; Zhang J; Postlethwait JH; Wang H
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31426485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics provides evidence for an ancient genome duplication event in fish.
    Taylor JS; Van de Peer Y; Braasch I; Meyer A
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1661-79. PubMed ID: 11604130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.