BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 28492966)

  • 21. Genes Encoding Teleost Fish Ligands and Associated Receptors Remained in Duplicate More Frequently than the Rest of the Genome.
    Grandchamp A; PiƩgu B; Monget P
    Genome Biol Evol; 2019 May; 11(5):1451-1462. PubMed ID: 31087101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD).
    Meyer A; Van de Peer Y
    Bioessays; 2005 Sep; 27(9):937-45. PubMed ID: 16108068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consequences of hoxb1 duplication in teleost fish.
    Hurley IA; Scemama JL; Prince VE
    Evol Dev; 2007; 9(6):540-54. PubMed ID: 17976051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes.
    Toloza-Villalobos J; Arroyo JI; Opazo JC
    J Mol Evol; 2015 Jan; 80(1):57-64. PubMed ID: 25487517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.
    Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA
    Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase.
    Lin CJ; Maugars G; Lafont AG; Jeng SR; Wu GC; Dufour S; Chang CF
    Gen Comp Endocrinol; 2020 May; 291():113395. PubMed ID: 31981691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling.
    Inoue J; Sato Y; Sinclair R; Tsukamoto K; Nishida M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14918-23. PubMed ID: 26578810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cluster expansion of apolipoprotein D (ApoD) genes in teleost fishes.
    Gu L; Xia C
    BMC Evol Biol; 2019 Jan; 19(1):9. PubMed ID: 30621595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates.
    Lorin T; Brunet FG; Laudet V; Volff JN
    G3 (Bethesda); 2018 May; 8(5):1795-1806. PubMed ID: 29599177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication.
    Amores A; Catchen J; Ferrara A; Fontenot Q; Postlethwait JH
    Genetics; 2011 Aug; 188(4):799-808. PubMed ID: 21828280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication.
    Davesne D; Friedman M; Schmitt AD; Fernandez V; Carnevale G; Ahlberg PE; Sanchez S; Benson RBJ
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subfunction partitioning, the teleost radiation and the annotation of the human genome.
    Postlethwait J; Amores A; Cresko W; Singer A; Yan YL
    Trends Genet; 2004 Oct; 20(10):481-90. PubMed ID: 15363902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Whole-genome duplication in teleost fishes and its evolutionary consequences.
    Glasauer SM; Neuhauss SC
    Mol Genet Genomics; 2014 Dec; 289(6):1045-60. PubMed ID: 25092473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide identification and characterization of 14-3-3 genes in fishes.
    Zhang K; Huang Y; Shi Q
    Gene; 2021 Jul; 791():145721. PubMed ID: 34010706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Evolution of Duplicated Ddx3 Genes in Teleosts: Insights from Japanese Flounder, Paralichthys olivaceus.
    Wang Z; Liu W; Song H; Wang H; Liu J; Zhao H; Du X; Zhang Q
    G3 (Bethesda); 2015 Jun; 5(8):1765-73. PubMed ID: 26109358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative genomic analysis of teleost fish bmal genes.
    Wang H
    Genetica; 2009 May; 136(1):149-61. PubMed ID: 18850331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications.
    Carretero-Paulet L; Fares MA
    Mol Biol Evol; 2012 Nov; 29(11):3541-51. PubMed ID: 22734049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Duplication events and the evolution of segmental identity.
    Hurley I; Hale ME; Prince VE
    Evol Dev; 2005; 7(6):556-67. PubMed ID: 16336409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage.
    Ogino Y; Kuraku S; Ishibashi H; Miyakawa H; Sumiya E; Miyagawa S; Matsubara H; Yamada G; Baker ME; Iguchi T
    Mol Biol Evol; 2016 Jan; 33(1):228-44. PubMed ID: 26507457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary history of c-myc in teleosts and characterization of the duplicated c-myca genes in goldfish embryos.
    Marandel L; Labbe C; Bobe J; Le Bail PY
    Mol Reprod Dev; 2012 Feb; 79(2):85-96. PubMed ID: 22213278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.