BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28493129)

  • 21. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.
    Könitzer JD; Müller MM; Leparc G; Pauers M; Bechmann J; Schulz P; Schaub J; Enenkel B; Hildebrandt T; Hampel M; Tolstrup AB
    Biotechnol J; 2015 Sep; 10(9):1412-23. PubMed ID: 26212696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 'Omics driven discoveries of gene targets for apoptosis attenuation in CHO cells.
    Orellana CA; Martínez VS; MacDonald MA; Henry MN; Gillard M; Gray PP; Nielsen LK; Mahler S; Marcellin E
    Biotechnol Bioeng; 2021 Jan; 118(1):481-490. PubMed ID: 32865815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering.
    Glinšek K; Bozovičar K; Bratkovič T
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpression of Serpinb1 in Chinese hamster ovary cells increases recombinant IgG productivity.
    Lin N; Brooks J; Sealover N; George HJ; Kayser KJ
    J Biotechnol; 2015 Jan; 193():91-9. PubMed ID: 25444873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell engineering and cultivation of chinese hamster ovary (CHO) cells.
    Omasa T; Onitsuka M; Kim WD
    Curr Pharm Biotechnol; 2010 Apr; 11(3):233-40. PubMed ID: 20210750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells.
    Bryan L; Clynes M; Meleady P
    Biotechnol Adv; 2021; 49():107757. PubMed ID: 33895332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The potential of emerging sub-omics technologies for CHO cell engineering.
    Jerabek T; Keysberg C; Otte K
    Biotechnol Adv; 2022 Oct; 59():107978. PubMed ID: 35569699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.
    Popp O; Müller D; Didzus K; Paul W; Lipsmeier F; Kirchner F; Niklas J; Mauch K; Beaucamp N
    Biotechnol Bioeng; 2016 Sep; 113(9):2005-19. PubMed ID: 26913695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.
    Gutierrez JM; Lewis NE
    Biotechnol J; 2015 Jul; 10(7):939-49. PubMed ID: 26099571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2D-DIGE screening of high-productive CHO cells under glucose limitation--basic changes in the proteome equipment and hints for epigenetic effects.
    Wingens M; Gätgens J; Schmidt A; Albaum SP; Büntemeyer H; Noll T; Hoffrogge R
    J Biotechnol; 2015 May; 201():86-97. PubMed ID: 25612871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic biology approaches for dynamic CHO cell engineering.
    Donaldson J; Kleinjan DJ; Rosser S
    Curr Opin Biotechnol; 2022 Dec; 78():102806. PubMed ID: 36194920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Meganuclease-driven targeted integration in CHO-K1 cells for the fast generation of HTS-compatible cell-based assays.
    Cabaniols JP; Ouvry C; Lamamy V; Fery I; Craplet ML; Moulharat N; Guenin SP; Bedut S; Nosjean O; Ferry G; Devavry S; Jacqmarcq C; Lebuhotel C; Mathis L; Delenda C; Boutin JA; Duchâteau P; Cogé F; Pâques F
    J Biomol Screen; 2010 Sep; 15(8):956-67. PubMed ID: 20625180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment.
    Yee JC; de Leon Gatti M; Philp RJ; Yap M; Hu WS
    Biotechnol Bioeng; 2008 Apr; 99(5):1186-204. PubMed ID: 17929327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.
    Fischer S; Handrick R; Otte K
    Biotechnol Adv; 2015 Dec; 33(8):1878-96. PubMed ID: 26523782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome study and identification of potential marker genes related to the stable expression of recombinant proteins in CHO clones.
    Jamnikar U; Nikolic P; Belic A; Blas M; Gaser D; Francky A; Laux H; Blejec A; Baebler S; Gruden K
    BMC Biotechnol; 2015 Oct; 15():98. PubMed ID: 26499110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developing genomic platforms for Chinese hamster ovary cells.
    Kantardjieff A; Nissom PM; Chuah SH; Yusufi F; Jacob NM; Mulukutla BC; Yap M; Hu WS
    Biotechnol Adv; 2009; 27(6):1028-1035. PubMed ID: 19470403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS.
    Schelletter L; Albaum S; Walter S; Noll T; Hoffrogge R
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8127-8143. PubMed ID: 31420692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A scaffold for the Chinese hamster genome.
    Wlaschin KF; Hu WS
    Biotechnol Bioeng; 2007 Oct; 98(2):429-39. PubMed ID: 17390381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells.
    Vishwanathan N; Le H; Jacob NM; Tsao YS; Ng SW; Loo B; Liu Z; Kantardjieff A; Hu WS
    Biotechnol Bioeng; 2014 Mar; 111(3):518-28. PubMed ID: 24108600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of the supernatant from host and transfected CHO cells using iTRAQ 8-plex technique.
    Zhu G; Sun L; Albanetti T; Linkous T; Larkin C; Schoner R; McGivney JB; Dovichi NJ
    Biotechnol Bioeng; 2016 Oct; 113(10):2140-8. PubMed ID: 27070921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.