BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

759 related articles for article (PubMed ID: 28493130)

  • 1. A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data.
    Monger C; Motheramgari K; McSharry J; Barron N; Clarke C
    Methods Mol Biol; 2017; 1603():169-186. PubMed ID: 28493130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards next generation CHO cell biology: Bioinformatics methods for RNA-Seq-based expression profiling.
    Monger C; Kelly PS; Gallagher C; Clynes M; Barron N; Clarke C
    Biotechnol J; 2015 Jul; 10(7):950-66. PubMed ID: 26058739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated RNA-Seq analysis pipeline to identify and visualize differentially expressed genes and pathways in CHO cells.
    Chen C; Le H; Goudar CT
    Biotechnol Prog; 2015; 31(5):1150-62. PubMed ID: 26150012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the Chinese hamster ovary cell long noncoding RNA transcriptome using RNASeq.
    Motheramgari K; Valdés-Bango Curell R; Tzani I; Gallagher C; Castro-Rivadeneyra M; Zhang L; Barron N; Clarke C
    Biotechnol Bioeng; 2020 Oct; 117(10):3224-3231. PubMed ID: 32558938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Seq: revelation of the messengers.
    Van Verk MC; Hickman R; Pieterse CM; Van Wees SC
    Trends Plant Sci; 2013 Apr; 18(4):175-9. PubMed ID: 23481128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of two public genome references for chinese hamster ovary cells in the context of rna-seq based gene expression analysis.
    Chen C; Le H; Goudar CT
    Biotechnol Bioeng; 2017 Jul; 114(7):1603-1613. PubMed ID: 28295162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Throughput Sequencing-Based Approaches for Gene Expression Analysis.
    Reddy RRS; Ramanujam MV
    Methods Mol Biol; 2018; 1783():299-323. PubMed ID: 29767369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UTAP: User-friendly Transcriptome Analysis Pipeline.
    Kohen R; Barlev J; Hornung G; Stelzer G; Feldmesser E; Kogan K; Safran M; Leshkowitz D
    BMC Bioinformatics; 2019 Mar; 20(1):154. PubMed ID: 30909881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of ChIP-Seq and RNA-Seq Data with BioWardrobe.
    Vallabh S; Kartashov AV; Barski A
    Methods Mol Biol; 2018; 1783():343-360. PubMed ID: 29767371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.
    Könitzer JD; Müller MM; Leparc G; Pauers M; Bechmann J; Schulz P; Schaub J; Enenkel B; Hildebrandt T; Hampel M; Tolstrup AB
    Biotechnol J; 2015 Sep; 10(9):1412-23. PubMed ID: 26212696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of cellular states of CHO-K1 suspension cell culture through cell cycle and RNA-sequencing profiling.
    Tossolini I; López-Díaz FJ; Kratje R; Prieto CC
    J Biotechnol; 2018 Nov; 286():56-67. PubMed ID: 30243609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Seq-Based Comparative Transcriptomics: RNA Preparation and Bioinformatics.
    Rodríguez-García A; Sola-Landa A; Barreiro C
    Methods Mol Biol; 2017; 1645():59-72. PubMed ID: 28710621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics Pipeline for Transcriptome Sequencing Analysis.
    Djebali S; Wucher V; Foissac S; Hitte C; Corre E; Derrien T
    Methods Mol Biol; 2017; 1468():201-19. PubMed ID: 27662878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Guide for Designing and Analyzing RNA-Seq Data.
    Chatterjee A; Ahn A; Rodger EJ; Stockwell PA; Eccles MR
    Methods Mol Biol; 2018; 1783():35-80. PubMed ID: 29767357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Seq Experiment and Data Analysis.
    Liang H; Zeng E
    Methods Mol Biol; 2016; 1366():99-114. PubMed ID: 26585130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal transcriptome profiling by directional next-generation sequencing using 100 ng of total RNA.
    Brooks MJ; Rajasimha HK; Swaroop A
    Methods Mol Biol; 2012; 884():319-34. PubMed ID: 22688717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-seq: Basic Bioinformatics Analysis.
    Ji F; Sadreyev RI
    Curr Protoc Mol Biol; 2018 Oct; 124(1):e68. PubMed ID: 30222249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell Transcriptome Analysis Using SINCERA Pipeline.
    Guo M; Xu Y
    Methods Mol Biol; 2018; 1751():209-222. PubMed ID: 29508300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.