BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 28493132)

  • 1. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift.
    Henry M; Power M; Kaushik P; Coleman O; Clynes M; Meleady P
    J Proteome Res; 2017 Jul; 16(7):2339-2358. PubMed ID: 28509555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Expression Pattern of the Phosphoproteome Is Significantly Changed During the Growth Phases of Recombinant CHO Cell Culture.
    Kaushik P; Henry M; Clynes M; Meleady P
    Biotechnol J; 2018 Oct; 13(10):e1700221. PubMed ID: 30076757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs.
    Alonso-Fernández S; Arribas-Díez I; Fernández-García G; González-Quiñónez N; Jensen ON; Manteca A
    J Proteomics; 2022 Oct; 269():104719. PubMed ID: 36089190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae.
    Oh Y; Franck WL; Dean RA
    Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins.
    Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY
    Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Phosphorylated Proteins Using Mass Spectrometry.
    Yu LR; Veenstra TD
    Curr Protein Pept Sci; 2021; 22(2):148-157. PubMed ID: 33231146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in the analysis of protein phosphorylation.
    Paradela A; Albar JP
    J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Optimization of Automated Phosphopeptide Enrichment for High-Sensitivity Phosphoproteomics.
    Bortel P; Piga I; Koenig C; Gerner C; Martinez-Val A; Olsen JV
    Mol Cell Proteomics; 2024 May; 23(5):100754. PubMed ID: 38548019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media.
    Kaushik P; Curell RV; Henry M; Barron N; Meleady P
    Biotechnol Lett; 2020 Dec; 42(12):2523-2536. PubMed ID: 32648187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.
    Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H
    Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification.
    Chen Y; Liang X
    Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells.
    Yu QW; Li XS; Xiao Y; Guo L; Zhang F; Cai Q; Feng YQ; Yuan BF; Wang Y
    J Chromatogr A; 2014 Oct; 1365():54-60. PubMed ID: 25262027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.