These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28493144)

  • 1. Differentiated seasonal vegetation cover dynamics of degraded grasslands in Inner Mongolia recorded by continuous photography technique.
    Xu X; Liu H; Liu X; Song Z; Wang W; Qiu S
    Int J Biometeorol; 2019 May; 63(5):671-677. PubMed ID: 28493144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland.
    Ren S; Chen X; An S
    Int J Biometeorol; 2017 Apr; 61(4):601-612. PubMed ID: 27562030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inner Mongolian grassland plant phenological changes and their climatic drivers.
    Wang G; Huang Y; Wei Y; Zhang W; Li T; Zhang Q
    Sci Total Environ; 2019 Sep; 683():1-8. PubMed ID: 31125849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A global increase in tree cover extends the growing season length as observed from satellite records.
    Fang Z; Brandt M; Wang L; Fensholt R
    Sci Total Environ; 2022 Feb; 806(Pt 3):151205. PubMed ID: 34710418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenological responses of Icelandic subarctic grasslands to short-term and long-term natural soil warming.
    Leblans NIW; Sigurdsson BD; Vicca S; Fu Y; Penuelas J; Janssens IA
    Glob Chang Biol; 2017 Nov; 23(11):4932-4945. PubMed ID: 28470761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in vegetation phenology on the Mongolian Plateau and their climatic determinants.
    Miao L; Müller D; Cui X; Ma M
    PLoS One; 2017; 12(12):e0190313. PubMed ID: 29267403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can wind farms change the phenology of grassland in China?
    Liu Z; Li G; Wang G
    Sci Total Environ; 2022 Aug; 832():155077. PubMed ID: 35398419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Grassland vegetation phenology change and its response to climate changes in North China].
    Qin GX; Wu J; Li CB; Qin AN; Ni L; Yao XQ
    Ying Yong Sheng Tai Xue Bao; 2019 Dec; 30(12):4099-4107. PubMed ID: 31840454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile.
    Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ
    Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal response of grasslands to climate change on the Tibetan Plateau.
    Yu H; Xu J; Okuto E; Luedeling E
    PLoS One; 2012; 7(11):e49230. PubMed ID: 23173048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Five years of phenological monitoring in a mountain grassland: inter-annual patterns and evaluation of the sampling protocol.
    Filippa G; Cremonese E; Galvagno M; Migliavacca M; Morra di Cella U; Petey M; Siniscalco C
    Int J Biometeorol; 2015 Dec; 59(12):1927-37. PubMed ID: 25933668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Livestock grazing supports native plants and songbirds in a California annual grassland.
    Gennet S; Spotswood E; Hammond M; Bartolome JW
    PLoS One; 2017; 12(6):e0176367. PubMed ID: 28614358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013.
    Westergaard-Nielsen A; Lund M; Pedersen SH; Schmidt NM; Klosterman S; Abermann J; Hansen BU
    Ambio; 2017 Feb; 46(Suppl 1):39-52. PubMed ID: 28116683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.
    Wang S; Wang X; Chen G; Yang Q; Wang B; Ma Y; Shen M
    Sci Total Environ; 2017 Sep; 593-594():449-461. PubMed ID: 28351812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau.
    Zhou X; Yamaguchi Y; Arjasakusuma S
    Sci Total Environ; 2018 Mar; 616-617():730-743. PubMed ID: 29100687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China.
    Zhang J; Zuo X; Zhou X; Lv P; Lian J; Yue X
    Environ Monit Assess; 2017 May; 189(5):216. PubMed ID: 28411318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China?
    Yan Y; Lu X
    PeerJ; 2015; 3():e1020. PubMed ID: 26157607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A process-based model reveals the restoration gap of degraded grasslands in Inner Mongolian steppe.
    Wu L; Liu H; Liang B; Zhu X; Cao J; Wang Q; Jiang L; Cressey EL; Quine TA
    Sci Total Environ; 2022 Feb; 806(Pt 3):151324. PubMed ID: 34749967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decline in atmospheric sulphur deposition and changes in climate are the major drivers of long-term change in grassland plant communities in Scotland.
    Mitchell RJ; Hewison RL; Fielding DA; Fisher JM; Gilbert DJ; Hurskainen S; Pakeman RJ; Potts JM; Riach D
    Environ Pollut; 2018 Apr; 235():956-964. PubMed ID: 29358149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal variation of the vegetation of the semiarid Puna in a pastoral system in the Pozuelos Biosphere Reserve.
    Rojo V; Arzamendia Y; Pérez C; Baldo J; Vilá BL
    Environ Monit Assess; 2019 Sep; 191(10):635. PubMed ID: 31522254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.