BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 28493213)

  • 1. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.
    Rindone AN; Nyberg E; Grayson WL
    Methods Mol Biol; 2018; 1577():209-226. PubMed ID: 28493213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.
    Temple JP; Hutton DL; Hung BP; Huri PY; Cook CA; Kondragunta R; Jia X; Grayson WL
    J Biomed Mater Res A; 2014 Dec; 102(12):4317-25. PubMed ID: 24510413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteogenesis of 3D-Printed PCL/TCP/bdECM Scaffold Using Adipose-Derived Stem Cells Aggregates; An Experimental Study in the Canine Mandible.
    Lee JS; Park TH; Ryu JY; Kim DK; Oh EJ; Kim HM; Shim JH; Yun WS; Huh JB; Moon SH; Kang SS; Chung HY
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.
    Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW
    Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties.
    Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparin-Conjugated Decellularized Bone Particles Promote Enhanced Osteogenic Signaling of PDGF-BB to Adipose-Derived Stem Cells in Tissue Engineered Bone Grafts.
    Rindone AN; Kachniarz B; Achebe CC; Riddle RC; O'Sullivan AN; Dorafshar AH; Grayson WL
    Adv Healthc Mater; 2019 May; 8(10):e1801565. PubMed ID: 30941920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Electron Beam Sterilization on Three-Dimensional-Printed Polycaprolactone/Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering.
    Bruyas A; Moeinzadeh S; Kim S; Lowenberg DW; Yang YP
    Tissue Eng Part A; 2019 Feb; 25(3-4):248-256. PubMed ID: 30234441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by
    Aldemir Dikici B; Reilly GC; Claeyssens F
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12510-12524. PubMed ID: 32100541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic 3D-Bone Tissue Model.
    Parmaksiz M; Elçin AE; Elçin YM
    Methods Mol Biol; 2021; 2273():239-250. PubMed ID: 33604858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Effects of Beta Tri-Calcium Phosphate and Porcine-Derived Decellularized Bone Extracellular Matrix in 3D-Printed Polycaprolactone Scaffold on Bone Regeneration.
    Kim JY; Ahn G; Kim C; Lee JS; Lee IG; An SH; Yun WS; Kim SY; Shim JH
    Macromol Biosci; 2018 Jun; 18(6):e1800025. PubMed ID: 29687597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.
    Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG
    J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering.
    Du X; Wei D; Huang L; Zhu M; Zhang Y; Zhu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109731. PubMed ID: 31349472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed polycaprolactone/tricalcium silicate scaffolds modified with decellularized bone ECM-oxidized alginate for bone tissue engineering.
    Menarbazari AA; Mansoori-Kermani A; Mashayekhan S; Soleimani A
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130827. PubMed ID: 38484823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.
    Correia C; Bhumiratana S; Yan LP; Oliveira AL; Gimble JM; Rockwood D; Kaplan DL; Sousa RA; Reis RL; Vunjak-Novakovic G
    Acta Biomater; 2012 Jul; 8(7):2483-92. PubMed ID: 22421311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes.
    Yazdanpanah Z; Sharma NK; Raquin A; Cooper DML; Chen X; Johnston JD
    Biomed Eng Online; 2023 Jul; 22(1):73. PubMed ID: 37474951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.