These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Existence of different structural intermediates on the fibrillation pathway of human serum albumin. Juárez J; Taboada P; Mosquera V Biophys J; 2009 Mar; 96(6):2353-70. PubMed ID: 19289061 [TBL] [Abstract][Full Text] [Related]
3. Amyloid fibril-like structure underlies the aggregate structure across the pH range for beta-lactoglobulin. Krebs MR; Devlin GL; Donald AM Biophys J; 2009 Jun; 96(12):5013-9. PubMed ID: 19527661 [TBL] [Abstract][Full Text] [Related]
4. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments. Zhuang X; Klauda JB Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1541-52. PubMed ID: 27107553 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of the osmosensor ProP. Sayeed WM; Baenziger JE Biochim Biophys Acta; 2009 May; 1788(5):1108-15. PubMed ID: 19366597 [TBL] [Abstract][Full Text] [Related]
6. YidC assists the stepwise and stochastic folding of membrane proteins. Serdiuk T; Balasubramaniam D; Sugihara J; Mari SA; Kaback HR; Müller DJ Nat Chem Biol; 2016 Nov; 12(11):911-917. PubMed ID: 27595331 [TBL] [Abstract][Full Text] [Related]
7. Manipulating phospholipids for crystallization of a membrane transport protein. Guan L; Smirnova IN; Verner G; Nagamori S; Kaback HR Proc Natl Acad Sci U S A; 2006 Feb; 103(6):1723-6. PubMed ID: 16446422 [TBL] [Abstract][Full Text] [Related]
14. Heparin and Methionine Oxidation Promote the Formation of Apolipoprotein A-I Amyloid Comprising α-Helical and β-Sheet Structures. Townsend D; Hughes E; Hussain R; Siligardi G; Baldock S; Madine J; Middleton DA Biochemistry; 2017 Mar; 56(11):1632-1644. PubMed ID: 27992182 [TBL] [Abstract][Full Text] [Related]
15. Proper fatty acid composition rather than an ionizable lipid amine is required for full transport function of lactose permease from Escherichia coli. Vitrac H; Bogdanov M; Dowhan W J Biol Chem; 2013 Feb; 288(8):5873-85. PubMed ID: 23322771 [TBL] [Abstract][Full Text] [Related]
16. Formation of amyloid-like fibrils by ovalbumin and related proteins under conditions relevant to food processing. Pearce FG; Mackintosh SH; Gerrard JA J Agric Food Chem; 2007 Jan; 55(2):318-22. PubMed ID: 17227060 [TBL] [Abstract][Full Text] [Related]
17. Coarse-grained simulations of proton-dependent conformational changes in lactose permease. Jewel Y; Dutta P; Liu J Proteins; 2016 Aug; 84(8):1067-74. PubMed ID: 27090495 [TBL] [Abstract][Full Text] [Related]
18. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily. Abramson J; Kaback HR; Iwata S Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation as conformational switch from the native to amyloid state: Trp-cage as a protein aggregation model. Kardos J; Kiss B; Micsonai A; Rovó P; Menyhárd DK; Kovács J; Váradi G; Tóth GK; Perczel A J Phys Chem B; 2015 Feb; 119(7):2946-55. PubMed ID: 25625571 [TBL] [Abstract][Full Text] [Related]
20. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease. Kasho VN; Smirnova IN; Kaback HR J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]