These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28493677)
1. The N6-Position of Adenine Is a Blind Spot for TAL-Effectors That Enables Effective Binding of Methylated and Fluorophore-Labeled DNA. Flade S; Jasper J; Gieß M; Juhasz M; Dankers A; Kubik G; Koch O; Weinhold E; Summerer D ACS Chem Biol; 2017 Jul; 12(7):1719-1725. PubMed ID: 28493677 [TBL] [Abstract][Full Text] [Related]
2. Design and Application of DNA Modification-Specific Transcription-Activator-Like Effectors. Buchmuller B; Muñoz-López Á; Gieß M; Summerer D Methods Mol Biol; 2021; 2198():381-399. PubMed ID: 32822046 [TBL] [Abstract][Full Text] [Related]
3. Complete, Programmable Decoding of Oxidized 5-Methylcytosine Nucleobases in DNA by Chemoselective Blockage of Universal Transcription-Activator-Like Effector Repeats. Gieß M; Witte A; Jasper J; Koch O; Summerer D J Am Chem Soc; 2018 May; 140(18):5904-5908. PubMed ID: 29677450 [TBL] [Abstract][Full Text] [Related]
4. Selective recognition of Rathi P; Maurer S; Summerer D Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685980 [TBL] [Abstract][Full Text] [Related]
5. Context and number of noncanonical repeat variable diresidues impede the design of TALE proteins with improved DNA targeting. Anderson JT; Rogers JM; Barrera LA; Bulyk ML Protein Sci; 2020 Feb; 29(2):606-616. PubMed ID: 31833142 [TBL] [Abstract][Full Text] [Related]
6. Structural Insights into the Specific Recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL Effectors. Liu L; Zhang Y; Liu M; Wei W; Yi C; Peng J J Mol Biol; 2020 Feb; 432(4):1035-1047. PubMed ID: 31863750 [TBL] [Abstract][Full Text] [Related]
7. Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae. Erkes A; Reschke M; Boch J; Grau J Genome Biol Evol; 2017 Jun; 9(6):1599-1615. PubMed ID: 28637323 [TBL] [Abstract][Full Text] [Related]
8. Interrogating Key Positions of Size-Reduced TALE Repeats Reveals a Programmable Sensor of 5-Carboxylcytosine. Maurer S; Giess M; Koch O; Summerer D ACS Chem Biol; 2016 Dec; 11(12):3294-3299. PubMed ID: 27978710 [TBL] [Abstract][Full Text] [Related]
9. Programmable Protein-DNA Cross-Linking for the Direct Capture and Quantification of 5-Formylcytosine. Gieß M; Muñoz-López Á; Buchmuller B; Kubik G; Summerer D J Am Chem Soc; 2019 Jun; 141(24):9453-9457. PubMed ID: 31180648 [TBL] [Abstract][Full Text] [Related]
10. Engineered TALE Repeats for Enhanced Imaging-Based Analysis of Cellular 5-Methylcytosine. Muñoz-López Á; Jung A; Buchmuller B; Wolffgramm J; Maurer S; Witte A; Summerer D Chembiochem; 2021 Feb; 22(4):645-651. PubMed ID: 32991020 [TBL] [Abstract][Full Text] [Related]
11. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis. Kubik G; Summerer D Chembiochem; 2016 Jun; 17(11):975-80. PubMed ID: 26972580 [TBL] [Abstract][Full Text] [Related]
13. Multi-scale DNA language model improves 6 mA binding sites prediction. Hou A; Luo H; Liu H; Luo L; Ding P Comput Biol Chem; 2024 Oct; 112():108129. PubMed ID: 39067351 [TBL] [Abstract][Full Text] [Related]
14. Modified nucleobase-specific gene regulation using engineered transcription activator-like effectors. Tsuji S; Imanishi M Adv Drug Deliv Rev; 2019 Jul; 147():59-65. PubMed ID: 31513826 [TBL] [Abstract][Full Text] [Related]
15. Engineering DNA Backbone Interactions Results in TALE Scaffolds with Enhanced 5-Methylcytosine Selectivity. Rathi P; Witte A; Summerer D Sci Rep; 2017 Nov; 7(1):15067. PubMed ID: 29118409 [TBL] [Abstract][Full Text] [Related]
16. Flexible TALEs for an expanded use in gene activation, virulence and scaffold engineering. Becker S; Mücke S; Grau J; Boch J Nucleic Acids Res; 2022 Feb; 50(4):2387-2400. PubMed ID: 35150566 [TBL] [Abstract][Full Text] [Related]
17. Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition. Zhang Y; Liu L; Guo S; Song J; Zhu C; Yue Z; Wei W; Yi C Nat Commun; 2017 Oct; 8(1):901. PubMed ID: 29026078 [TBL] [Abstract][Full Text] [Related]
18. Design and Application of 6mA-Specific Zinc-Finger Proteins for the Readout of DNA Methylation. Maier JAH; Jeltsch A Methods Mol Biol; 2018; 1867():29-41. PubMed ID: 30155813 [TBL] [Abstract][Full Text] [Related]
19. Development of SPQC sensor based on the specific recognition of TAL-effectors for locus-specific detection of 6-methyladenine in DNA. Liu Y; Liu S; Huang J; Zhou J; He F Talanta; 2024 Sep; 277():126279. PubMed ID: 38810382 [TBL] [Abstract][Full Text] [Related]
20. A multiplexed transcription activator-like effector system for detecting specific DNA sequences. Honarmand A; Mayall R; George I; Oberding L; Dastidar H; Fegan J; Chaudhuri S; Dole J; Feng S; Hoang D; Moges R; Osgood J; Remondini T; van der Meulen WK; Wang S; Wintersinger C; Zaparoli Zucoloto A; Chatfield-Reed K; Arcellana-Panlilio M; Nygren A ACS Synth Biol; 2014 Dec; 3(12):953-5. PubMed ID: 25524096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]