These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28494155)

  • 1. Principles for Tuning Hydrophobic Ligand-Receptor Binding Kinetics.
    Weiß RG; Setny P; Dzubiella J
    J Chem Theory Comput; 2017 Jun; 13(6):3012-3019. PubMed ID: 28494155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent fluctuations in hydrophobic cavity-ligand binding kinetics.
    Setny P; Baron R; Michael Kekenes-Huskey P; McCammon JA; Dzubiella J
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1197-202. PubMed ID: 23297241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics.
    Zhou S; Weiß RG; Cheng LT; Dzubiella J; McCammon JA; Li B
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14989-14994. PubMed ID: 31270236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent Fluctuations Induce Non-Markovian Kinetics in Hydrophobic Pocket-Ligand Binding.
    Weiß RG; Setny P; Dzubiella J
    J Phys Chem B; 2016 Aug; 120(33):8127-36. PubMed ID: 27009557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein flexibility reduces solvent-mediated friction barriers of ligand binding to a hydrophobic surface patch.
    Päslack C; Schäfer LV; Heyden M
    Phys Chem Chem Phys; 2021 Mar; 23(9):5665-5672. PubMed ID: 33656505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dewetting-controlled binding of ligands to hydrophobic pockets.
    Setny P; Wang Z; Cheng LT; Li B; McCammon JA; Dzubiella J
    Phys Rev Lett; 2009 Oct; 103(18):187801. PubMed ID: 19905832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How hydrophobic drying forces impact the kinetics of molecular recognition.
    Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13277-82. PubMed ID: 23901110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are hydrodynamic interactions important in the kinetics of hydrophobic collapse?
    Li J; Morrone JA; Berne BJ
    J Phys Chem B; 2012 Sep; 116(37):11537-44. PubMed ID: 22931395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of water and steric constraints in the kinetics of cavity-ligand unbinding.
    Tiwary P; Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12015-9. PubMed ID: 26371312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context.
    Xi E; Venkateshwaran V; Li L; Rego N; Patel AJ; Garde S
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13345-13350. PubMed ID: 29158409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water properties and potential of mean force for hydrophobic interactions of methane and nanoscopic pockets studied by computer simulations.
    Setny P
    J Chem Phys; 2007 Aug; 127(5):054505. PubMed ID: 17688347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity, kinetics, and pathways of anisotropic ligands binding to hydrophobic model pockets.
    Weiß RG; Chudoba R; Setny P; Dzubiella J
    J Chem Phys; 2018 Sep; 149(9):094902. PubMed ID: 30195306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O2 and Water Migration Pathways between the Solvent and Heme Pockets of Hemoglobin with Open and Closed Conformations of the Distal HisE7.
    Shadrina MS; Peslherbe GH; English AM
    Biochemistry; 2015 Sep; 54(34):5279-89. PubMed ID: 26226401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfaces and hydrophobic interactions in receptor-ligand systems: A level-set variational implicit solvent approach.
    Cheng LT; Wang Z; Setny P; Dzubiella J; Li B; McCammon JA
    J Chem Phys; 2009 Oct; 131(14):144102. PubMed ID: 19831428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects.
    Cui D; Ou S; Patel S
    Proteins; 2014 Dec; 82(12):3312-26. PubMed ID: 25204743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease.
    Huang YM; Raymundo MA; Chen W; Chang CA
    Biochemistry; 2017 Mar; 56(9):1311-1323. PubMed ID: 28060481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypeptide friction and adhesion on hydrophobic and hydrophilic surfaces: a molecular dynamics case study.
    Serr A; Horinek D; Netz RR
    J Am Chem Soc; 2008 Sep; 130(37):12408-13. PubMed ID: 18712864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Binding Pocket Dynamics.
    Stank A; Kokh DB; Fuller JC; Wade RC
    Acc Chem Res; 2016 May; 49(5):809-15. PubMed ID: 27110726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water structure, dynamics, and spectral signatures: changes upon model cavity-ligand recognition.
    Baron R; Setny P; Paesani F
    J Phys Chem B; 2012 Nov; 116(46):13774-80. PubMed ID: 23102165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobicity of proteins and interfaces: insights from density fluctuations.
    Jamadagni SN; Godawat R; Garde S
    Annu Rev Chem Biomol Eng; 2011; 2():147-71. PubMed ID: 22432614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.