BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 28494744)

  • 1. Targeting Nrf2 in Protection Against Renal Disease.
    Guerrero-Hue M; Farre-Alins V; Palomino-Antolin A; Parada E; Rubio-Navarro A; Egido J; Egea J; Moreno JA
    Curr Med Chem; 2017; 24(33):3583-3605. PubMed ID: 28494744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease.
    Ruiz S; Pergola PE; Zager RA; Vaziri ND
    Kidney Int; 2013 Jun; 83(6):1029-41. PubMed ID: 23325084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression.
    Nezu M; Suzuki N; Yamamoto M
    Am J Nephrol; 2017; 45(6):473-483. PubMed ID: 28502971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renoprotective mechanisms of Astragaloside IV in cisplatin-induced acute kidney injury.
    Yan W; Xu Y; Yuan Y; Tian L; Wang Q; Xie Y; Shao X; Zhang M; Ni Z; Mou S
    Free Radic Res; 2017; 51(7-8):669-683. PubMed ID: 28750561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sinomenine activation of Nrf2 signaling prevents hyperactive inflammation and kidney injury in a mouse model of obstructive nephropathy.
    Qin T; Du R; Huang F; Yin S; Yang J; Qin S; Cao W
    Free Radic Biol Med; 2016 Mar; 92():90-99. PubMed ID: 26795599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism.
    Liao W; Fu Z; Zou Y; Wen D; Ma H; Zhou F; Chen Y; Zhang M; Zhang W
    Exp Cell Res; 2017 Nov; 360(2):292-302. PubMed ID: 28928081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease.
    Aminzadeh MA; Reisman SA; Vaziri ND; Khazaeli M; Yuan J; Meyer CJ
    Xenobiotica; 2014 Jun; 44(6):570-8. PubMed ID: 24195589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of redox modulating NRF2 activators on chronic kidney disease.
    Choi BH; Kang KS; Kwak MK
    Molecules; 2014 Aug; 19(8):12727-59. PubMed ID: 25140450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxico-pharmacological perspective of the Nrf2-Keap1 defense system against oxidative stress in kidney diseases.
    Saito H
    Biochem Pharmacol; 2013 Apr; 85(7):865-72. PubMed ID: 23333765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dexmedetomidine ameliorates lipopolysaccharide-induced acute kidney injury in rats by inhibiting inflammation and oxidative stress via the GSK-3β/Nrf2 signaling pathway.
    Feng X; Guan W; Zhao Y; Wang C; Song M; Yao Y; Yang T; Fan H
    J Cell Physiol; 2019 Aug; 234(10):18994-19009. PubMed ID: 30919976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nrf2 in health and disease: current and future clinical implications.
    Al-Sawaf O; Clarner T; Fragoulis A; Kan YW; Pufe T; Streetz K; Wruck CJ
    Clin Sci (Lond); 2015 Dec; 129(12):989-99. PubMed ID: 26386022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poricoic acid A enhances melatonin inhibition of AKI-to-CKD transition by regulating Gas6/AxlNFκB/Nrf2 axis.
    Chen DQ; Feng YL; Chen L; Liu JR; Wang M; Vaziri ND; Zhao YY
    Free Radic Biol Med; 2019 Apr; 134():484-497. PubMed ID: 30716432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure.
    Kim HJ; Vaziri ND
    Am J Physiol Renal Physiol; 2010 Mar; 298(3):F662-71. PubMed ID: 20007347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated iRhom2 drives prolonged PM
    Xu MX; Qin YT; Ge CX; Gu TT; Lou DS; Li Q; Hu LF; Li YY; Yang WW; Tan J
    Nanotoxicology; 2018 Nov; 12(9):1045-1067. PubMed ID: 30257117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway.
    Soetikno V; Sari FR; Lakshmanan AP; Arumugam S; Harima M; Suzuki K; Kawachi H; Watanabe K
    Mol Nutr Food Res; 2013 Sep; 57(9):1649-59. PubMed ID: 23174956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic potential of EGCG on acute renal damage in a rat model of obstructive nephropathy.
    Zhou P; Yu JF; Zhao CG; Sui FX; Teng X; Wu YB
    Mol Med Rep; 2013 Apr; 7(4):1096-102. PubMed ID: 23358654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olmesartan protects against oxidative stress possibly through the Nrf2 signaling pathway and inhibits inflammation in daunorubicin-induced nephrotoxicity in rats.
    Gounder VK; Arumugam S; Arozal W; Thandavarayan RA; Pitchaimani V; Harima M; Suzuki K; Nomoto M; Watanabe K
    Int Immunopharmacol; 2014 Feb; 18(2):282-9. PubMed ID: 24291173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of cytochrome P450 2E1 and activation of transcription factor Nrf2 are renoprotective in myoglobinuric acute kidney injury.
    Wang Z; Shah SV; Liu H; Baliga R
    Kidney Int; 2014 Aug; 86(2):338-49. PubMed ID: 24717297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches.
    Wei W; Ma N; Fan X; Yu Q; Ci X
    Free Radic Biol Med; 2020 Oct; 158():1-12. PubMed ID: 32663513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schisantherin A attenuates sepsis-induced acute kidney injury by suppressing inflammation via regulating the NRF2 pathway.
    Gui Y; Yang Y; Xu D; Tao S; Li J
    Life Sci; 2020 Oct; 258():118161. PubMed ID: 32730835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.