BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

729 related articles for article (PubMed ID: 28494972)

  • 41. Targeting CCR3 to Reduce Amyloid-β Production, Tau Hyperphosphorylation, and Synaptic Loss in a Mouse Model of Alzheimer's Disease.
    Zhu C; Xu B; Sun X; Zhu Q; Sui Y
    Mol Neurobiol; 2017 Dec; 54(10):7964-7978. PubMed ID: 27878757
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition.
    Pontecorvo MJ; Devous MD; Navitsky M; Lu M; Salloway S; Schaerf FW; Jennings D; Arora AK; McGeehan A; Lim NC; Xiong H; Joshi AD; Siderowf A; Mintun MA;
    Brain; 2017 Mar; 140(3):748-763. PubMed ID: 28077397
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roles of O-GlcNAcylation on amyloid-β precursor protein processing, tau phosphorylation, and hippocampal synapses dysfunction in Alzheimer's disease.
    Zheng BW; Yang L; Dai XL; Jiang ZF; Huang HC
    Neurol Res; 2016 Feb; 38(2):177-86. PubMed ID: 27078700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of the superoxide dismutase/catalase mimetic EUK-207 in a mouse model of Alzheimer's disease: protection against and interruption of progression of amyloid and tau pathology and cognitive decline.
    Clausen A; Xu X; Bi X; Baudry M
    J Alzheimers Dis; 2012; 30(1):183-208. PubMed ID: 22406441
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Abeta exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer's disease.
    Folwell J; Cowan CM; Ubhi KK; Shiabh H; Newman TA; Shepherd D; Mudher A
    Exp Neurol; 2010 Jun; 223(2):401-9. PubMed ID: 19782075
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The relation of synaptic biomarkers with Aβ, tau, glial activation, and neurodegeneration in Alzheimer's disease.
    Wang YT; Ashton NJ; Servaes S; Nilsson J; Woo MS; Pascoal TA; Tissot C; Rahmouni N; Therriault J; Lussier F; Chamoun M; Gauthier S; Brinkmalm A; Zetterberg H; Blennow K; Rosa-Neto P; Benedet AL
    Transl Neurodegener; 2024 May; 13(1):27. PubMed ID: 38802928
    [No Abstract]   [Full Text] [Related]  

  • 47. Linking amyloid-β and tau: amyloid-β induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton.
    Zempel H; Mandelkow EM
    Neurodegener Dis; 2012; 10(1-4):64-72. PubMed ID: 22156588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Yeast Model of Amyloid-β and Tau Aggregation in Alzheimer's Disease.
    Moosavi B; Mousavi B; Macreadie IG
    J Alzheimers Dis; 2015; 47(1):9-16. PubMed ID: 26402750
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer's disease.
    Sokolow S; Henkins KM; Bilousova T; Gonzalez B; Vinters HV; Miller CA; Cornwell L; Poon WW; Gylys KH
    J Neurochem; 2015 May; 133(3):368-79. PubMed ID: 25393609
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Understanding the cause of sporadic Alzheimer's disease.
    Zetterberg H; Mattsson N
    Expert Rev Neurother; 2014 Jun; 14(6):621-30. PubMed ID: 24852227
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms.
    Dehghani R; Rahmani F; Rezaei N
    Rev Neurosci; 2018 Feb; 29(2):161-182. PubMed ID: 28941357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chronic diabetic states worsen Alzheimer neuropathology and cognitive deficits accompanying disruption of calcium signaling in leptin-deficient APP/PS1 mice.
    Zhang S; Chai R; Yang YY; Guo SQ; Wang S; Guo T; Xu SF; Zhang YH; Wang ZY; Guo C
    Oncotarget; 2017 Jul; 8(27):43617-43634. PubMed ID: 28467789
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Untangling amyloid-β, tau, and metals in Alzheimer's disease.
    Savelieff MG; Lee S; Liu Y; Lim MH
    ACS Chem Biol; 2013 May; 8(5):856-65. PubMed ID: 23506614
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ghrelin in Alzheimer's disease: Pathologic roles and therapeutic implications.
    Jeon SG; Hong SB; Nam Y; Tae J; Yoo A; Song EJ; Kim KI; Lee D; Park J; Lee SM; Kim JI; Moon M
    Ageing Res Rev; 2019 Nov; 55():100945. PubMed ID: 31434007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synaptic dysfunction in Alzheimer's disease: From the role of amyloid β-peptide to the α-secretase ADAM10.
    Musardo S; Marcello E
    Eur J Pharmacol; 2017 Dec; 817():30-37. PubMed ID: 28625569
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unbiased high-content screening reveals Aβ- and tau-independent synaptotoxic activities in human brain homogenates from Alzheimer's patients and high-pathology controls.
    Jiang H; Esparza TJ; Kummer TT; Brody DL
    PLoS One; 2021; 16(11):e0259335. PubMed ID: 34748596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synaptic dysfunction in Alzheimer's disease.
    Marcello E; Epis R; Saraceno C; Di Luca M
    Adv Exp Med Biol; 2012; 970():573-601. PubMed ID: 22351073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Screening of treatment targets for Alzheimer's disease from the molecular mechanisms of impairment by β-amyloid aggregation and tau hyperphosphorylation.
    Lin LF; Luo HM
    Neurosci Bull; 2011 Feb; 27(1):53-60. PubMed ID: 21270904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cognitive Decline in Preclinical Alzheimer's Disease: Amyloid-Beta versus Tauopathy.
    Huber CM; Yee C; May T; Dhanala A; Mitchell CS
    J Alzheimers Dis; 2018; 61(1):265-281. PubMed ID: 29154274
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer's disease].
    Kukharsky MS; Ovchinnikov RK; Bachurin SO
    Zh Nevrol Psikhiatr Im S S Korsakova; 2015; 115(6):103-114. PubMed ID: 26438898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.