These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 28495009)
1. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Wang Y; Qiu Y; Thai T; Moore K; Liu H; Zheng B Comput Methods Programs Biomed; 2017 Jun; 144():97-104. PubMed ID: 28495009 [TBL] [Abstract][Full Text] [Related]
2. An effective automatic segmentation of abdominal adipose tissue using a convolution neural network. Micomyiza C; Zou B; Li Y Diabetes Metab Syndr; 2022 Sep; 16(9):102589. PubMed ID: 35995029 [TBL] [Abstract][Full Text] [Related]
3. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment. Lee YS; Hong N; Witanto JN; Choi YR; Park J; Decazes P; Eude F; Kim CO; Chang Kim H; Goo JM; Rhee Y; Yoon SH Clin Nutr; 2021 Aug; 40(8):5038-5046. PubMed ID: 34365038 [TBL] [Abstract][Full Text] [Related]
4. An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans. Wang Z; Meng Y; Weng F; Chen Y; Lu F; Liu X; Hou M; Zhang J Ann Biomed Eng; 2020 Jan; 48(1):312-328. PubMed ID: 31451989 [TBL] [Abstract][Full Text] [Related]
5. Deep learning method for localization and segmentation of abdominal CT. Dabiri S; Popuri K; Ma C; Chow V; Feliciano EMC; Caan BJ; Baracos VE; Beg MF Comput Med Imaging Graph; 2020 Oct; 85():101776. PubMed ID: 32862015 [TBL] [Abstract][Full Text] [Related]
6. Visceral adiposity and inflammatory bowel disease. Rowan CR; McManus J; Boland K; O'Toole A Int J Colorectal Dis; 2021 Nov; 36(11):2305-2319. PubMed ID: 34104989 [TBL] [Abstract][Full Text] [Related]
7. Optimization of abdominal fat quantification on CT imaging through use of standardized anatomic space: a novel approach. Tong Y; Udupa JK; Torigian DA Med Phys; 2014 Jun; 41(6):063501. PubMed ID: 24877839 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography. Park HJ; Shin Y; Park J; Kim H; Lee IS; Seo DW; Huh J; Lee TY; Park T; Lee J; Kim KW Korean J Radiol; 2020 Jan; 21(1):88-100. PubMed ID: 31920032 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images. Grainger AT; Krishnaraj A; Quinones MH; Tustison NJ; Epstein S; Fuller D; Jha A; Allman KL; Shi W Acad Radiol; 2021 Nov; 28(11):1481-1487. PubMed ID: 32771313 [TBL] [Abstract][Full Text] [Related]
10. Deep learning for abdominal adipose tissue segmentation with few labelled samples. Wang Z; Hounye AH; Zhang J; Hou M; Qi M Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):579-587. PubMed ID: 34845590 [TBL] [Abstract][Full Text] [Related]
11. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393 [TBL] [Abstract][Full Text] [Related]
12. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Hemke R; Buckless CG; Tsao A; Wang B; Torriani M Skeletal Radiol; 2020 Mar; 49(3):387-395. PubMed ID: 31396667 [TBL] [Abstract][Full Text] [Related]
13. Deep-learning convolutional neural network: Inner and outer bladder wall segmentation in CT urography. Gordon MN; Hadjiiski LM; Cha KH; Samala RK; Chan HP; Cohan RH; Caoili EM Med Phys; 2019 Feb; 46(2):634-648. PubMed ID: 30520055 [TBL] [Abstract][Full Text] [Related]
14. BRR-Net: A tandem architectural CNN-RNN for automatic body region localization in CT images. Agrawal V; Udupa J; Tong Y; Torigian D Med Phys; 2020 Oct; 47(10):5020-5031. PubMed ID: 32761899 [TBL] [Abstract][Full Text] [Related]
15. Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. Heidari M; Mirniaharikandehei S; Khuzani AZ; Danala G; Qiu Y; Zheng B Int J Med Inform; 2020 Dec; 144():104284. PubMed ID: 32992136 [TBL] [Abstract][Full Text] [Related]
16. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
17. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
18. Automated segmentation of five different body tissues on computed tomography using deep learning. Pu L; Gezer NS; Ashraf SF; Ocak I; Dresser DE; Dhupar R Med Phys; 2023 Jan; 50(1):178-191. PubMed ID: 36008356 [TBL] [Abstract][Full Text] [Related]
19. Fully automatic deep learning-based lung parenchyma segmentation and boundary correction in thoracic CT scans. Rikhari H; Baidya Kayal E; Ganguly S; Sasi A; Sharma S; Dheeksha DS; Saini M; Rangarajan K; Bakhshi S; Kandasamy D; Mehndiratta A Int J Comput Assist Radiol Surg; 2024 Feb; 19(2):261-272. PubMed ID: 37594684 [TBL] [Abstract][Full Text] [Related]
20. Fully Automated Segmentation of Connective Tissue Compartments for CT-Based Body Composition Analysis: A Deep Learning Approach. Nowak S; Faron A; Luetkens JA; Geißler HL; Praktiknjo M; Block W; Thomas D; Sprinkart AM Invest Radiol; 2020 Jun; 55(6):357-366. PubMed ID: 32369318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]