These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 28495329)

  • 1. Dynamics of the Driving Force During the Normal Vocal Fold Vibration Cycle.
    DeJonckere PH; Lebacq J; Titze IR
    J Voice; 2017 Nov; 31(6):649-661. PubMed ID: 28495329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Quantification of the Intraglottal Pressure: Modal Phonation and Voice Onset.
    DeJonckere PH; Lebacq J
    J Voice; 2020 Jul; 34(4):645.e19-645.e39. PubMed ID: 30658875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraglottal Aerodynamics at Vocal Fold Vibration Onset.
    DeJonckere P; Lebacq J
    J Voice; 2021 Jan; 35(1):156.e23-156.e32. PubMed ID: 31481279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
    Khosla S; Oren L; Ying J; Gutmark E
    Laryngoscope; 2014 Apr; 124 Suppl 2():S1-13. PubMed ID: 24510612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis.
    Lucero JC; Koenig LL; Lourenço KG; Ruty N; Pelorson X
    J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
    Oren L; Khosla S; Gutmark E
    J Voice; 2021 Jan; 35(1):69-76. PubMed ID: 31387765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of planar flow rate in an excised canine larynx model.
    Oren L; Khosla S; Dembinski D; Ying J; Gutmark E
    Laryngoscope; 2015 Feb; 125(2):383-8. PubMed ID: 25093928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.
    Erath BD; Peterson SD; Zañartu M; Wodicka GR; Plesniak MW
    J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of pressures involved in vocal exercises using semi-occluded vocal tracts.
    Robieux C; Galant C; Lagier A; Legou T; Giovanni A
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):106-12. PubMed ID: 24850270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing.
    Adachi S; Yu J
    J Acoust Soc Am; 2005 May; 117(5):3213-24. PubMed ID: 15957788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2014 Nov; 136(5):EL369-75. PubMed ID: 25373995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi-stable vocal fold adduction: a mechanism of modal-falsetto register shifts and mixed registration.
    Titze IR
    J Acoust Soc Am; 2014 Apr; 135(4):2091-101. PubMed ID: 25235006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.