BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28495544)

  • 1. Modeling glucose metabolism and lactate production in the kidney.
    Chen Y; Fry BC; Layton AT
    Math Biosci; 2017 Jul; 289():116-129. PubMed ID: 28495544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Glucose Metabolism in the Kidney.
    Chen Y; Fry BC; Layton AT
    Bull Math Biol; 2016 Jun; 78(6):1318-36. PubMed ID: 27371260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inner medullary lactate production and accumulation: a vasa recta model.
    Thomas SR
    Am J Physiol Renal Physiol; 2000 Sep; 279(3):F468-81. PubMed ID: 10966926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of renal medullary three-dimensional architecture on oxygen transport.
    Fry BC; Edwards A; Sgouralis I; Layton AT
    Am J Physiol Renal Physiol; 2014 Aug; 307(3):F263-72. PubMed ID: 24899054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism?
    Cohen JJ
    Am J Physiol; 1979 May; 236(5):F423-33. PubMed ID: 220881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of glucose transport and conversion to lactate in the renal medullary microcirculation.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2006 Jan; 290(1):F87-102. PubMed ID: 16118395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2016 Feb; 310(3):F237-47. PubMed ID: 26831340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.
    Chen J; Layton AT; Edwards A
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F517-36. PubMed ID: 19403646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inner medullary lactate production and urine-concentrating mechanism: a flat medullary model.
    Hervy S; Thomas SR
    Am J Physiol Renal Physiol; 2003 Jan; 284(1):F65-81. PubMed ID: 12388411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic regulation of organic osmolytes in tubules from rat renal inner and outer medulla.
    Schmolke M; Guder WG
    Ren Physiol Biochem; 1989; 12(5-6):347-58. PubMed ID: 2623349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen transport in a cross section of the rat inner medulla: impact of heterogeneous distribution of nephrons and vessels.
    Fry BC; Layton AT
    Math Biosci; 2014 Dec; 258():68-76. PubMed ID: 25260928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2010 Sep; 299(3):F616-33. PubMed ID: 20534869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla.
    Wirthensohn G; Lefrank S; Schmolke M; Guder WG
    Am J Physiol; 1989 Jan; 256(1 Pt 2):F128-35. PubMed ID: 2912156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter.
    Layton AT; Dantzler WH; Pannabecker TL
    Am J Physiol Renal Physiol; 2012 Mar; 302(5):F591-605. PubMed ID: 22088433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of rat papillary collecting duct cells: functional and metabolic assessment.
    Stokes JB; Grupp C; Kinne RK
    Am J Physiol; 1987 Aug; 253(2 Pt 2):F251-62. PubMed ID: 3303974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in rat renal cortical and medullary guanosine 3'5'-monophosphate accumulation by oxygen- and calcium-dependent and -independent mechanisms: evidence for a calcium-independent action of oxygen in renal inner medulla.
    DeRubertis FR; Craven PA
    Metabolism; 1978 Jul; 27(7):855-68. PubMed ID: 207948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture of the human renal inner medulla and functional implications.
    Wei G; Rosen S; Dantzler WH; Pannabecker TL
    Am J Physiol Renal Physiol; 2015 Oct; 309(7):F627-37. PubMed ID: 26290371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.