These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28495545)

  • 1. Asymptotic tracking and disturbance rejection of the blood glucose regulation system.
    Ashley B; Liu W
    Math Biosci; 2017 Jul; 289():78-88. PubMed ID: 28495545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model for the robust blood glucose tracking.
    Liu W
    Math Biosci Eng; 2019 Jan; 16(2):759-781. PubMed ID: 30861665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedforward-feedback multiple predictive controllers for glucose regulation in type 1 diabetes.
    Abu-Rmileh A; Garcia-Gabin W
    Comput Methods Programs Biomed; 2010 Jul; 99(1):113-23. PubMed ID: 20430467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas.
    Bequette BW
    Diabetes Technol Ther; 2005 Feb; 7(1):28-47. PubMed ID: 15738702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gain-scheduling model predictive controller for blood glucose control in type 1 diabetes.
    Abu-Rmileh A; Garcia-Gabin W
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2478-84. PubMed ID: 19846371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust sliding mode controller with internal model for closed-loop artificial pancreas.
    Abu-Rmileh A; Garcia-Gabin W; Zambrano D
    Med Biol Eng Comput; 2010 Dec; 48(12):1191-201. PubMed ID: 20658267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance.
    Ly TT; Weinzimer SA; Maahs DM; Sherr JL; Roy A; Grosman B; Cantwell M; Kurtz N; Carria L; Messer L; von Eyben R; Buckingham BA
    Pediatr Diabetes; 2017 Aug; 18(5):348-355. PubMed ID: 27191182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control oriented model of insulin and glucose dynamics in type 1 diabetics.
    Fabietti PG; Canonico V; Federici MO; Benedetti MM; Sarti E
    Med Biol Eng Comput; 2006 Mar; 44(1-2):69-78. PubMed ID: 16929923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model free sliding mode controller for blood glucose control: Towards artificial pancreas without need to mathematical model of the system.
    Ebrahimi N; Ozgoli S; Ramezani A
    Comput Methods Programs Biomed; 2020 Oct; 195():105663. PubMed ID: 32750632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes.
    Fernandez de Canete J; Gonzalez-Perez S; Ramos-Diaz JC
    Comput Methods Programs Biomed; 2012 Apr; 106(1):55-66. PubMed ID: 22178070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model-based algorithm for blood glucose control in type I diabetic patients.
    Parker RS; Doyle FJ; Peppas NA
    IEEE Trans Biomed Eng; 1999 Feb; 46(2):148-57. PubMed ID: 9932336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Three-Compartmental Model for Artificial Pancreas: Development and Validation.
    Piemonte V; Capocelli M; De Santis L; Maurizi AR; Pozzilli P
    Artif Organs; 2017 Dec; 41(12):E326-E336. PubMed ID: 28853168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wiener sliding-mode control for artificial pancreas: a new nonlinear approach to glucose regulation.
    Abu-Rmileh A; Garcia-Gabin W
    Comput Methods Programs Biomed; 2012 Aug; 107(2):327-40. PubMed ID: 22560247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics.
    Ibbini MS; Masadeh MA
    J Med Eng Technol; 2005; 29(2):64-9. PubMed ID: 15804854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic Model Predictive Control of Bihormonal Artificial Pancreas System Based on Switching Control and Dynamic R-parameter.
    Tang F; Wang Y
    J Diabetes Sci Technol; 2017 Nov; 11(6):1112-1123. PubMed ID: 28728434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor.
    Finan DA; Dassau E; Breton MD; Patek SD; McCann TW; Kovatchev BP; Doyle FJ; Levy BL; Venugopalan R
    J Diabetes Sci Technol; 2015 Jun; 10(1):104-10. PubMed ID: 26134834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Learning" Can Improve the Blood Glucose Control Performance for Type 1 Diabetes Mellitus.
    Wang Y; Zhang J; Zeng F; Wang N; Chen X; Zhang B; Zhao D; Yang W; Cobelli C
    Diabetes Technol Ther; 2017 Jan; 19(1):41-48. PubMed ID: 28060528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress Testing of an Artificial Pancreas System With Pizza and Exercise Leads to Improvements in the System's Fuzzy Logic Controller.
    Mauseth R; Lord SM; Hirsch IB; Kircher RC; Matheson DP; Greenbaum CJ
    J Diabetes Sci Technol; 2015 Sep; 9(6):1253-9. PubMed ID: 26370244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal H infinity insulin injection control for blood glucose regulation in diabetic patients.
    Chee F; Savkin AV; Fernando TL; Nahavandi S
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1625-31. PubMed ID: 16235648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel blood glucose regulation using TSK0-FCMAC: a fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme.
    Ting CW; Quek C
    IEEE Trans Neural Netw; 2009 May; 20(5):856-71. PubMed ID: 19304482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.