BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 28496103)

  • 1. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications.
    Keriquel V; Oliveira H; Rémy M; Ziane S; Delmond S; Rousseau B; Rey S; Catros S; Amédée J; Guillemot F; Fricain JC
    Sci Rep; 2017 May; 7(1):1778. PubMed ID: 28496103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-Assisted Bioprinting for Bone Repair.
    Hakobyan D; Kerouredan O; Remy M; Dusserre N; Medina C; Devillard R; Fricain JC; Oliveira H
    Methods Mol Biol; 2020; 2140():135-144. PubMed ID: 32207109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Laser-assisted bioprinting: a novel approach for bone regeneration applications].
    Oliveira H; Dusserre N; Hakobyan D; Fricain JC
    Med Sci (Paris); 2018 Feb; 34(2):125-128. PubMed ID: 29451481
    [No Abstract]   [Full Text] [Related]  

  • 4.
    Touya N; Devun M; Handschin C; Casenave S; Ahmed Omar N; Gaubert A; Dusserre N; De Oliveira H; Kérourédan O; Devillard R
    Biofabrication; 2022 Mar; 14(2):. PubMed ID: 35203068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration.
    Kérourédan O; Hakobyan D; Rémy M; Ziane S; Dusserre N; Fricain JC; Delmond S; Thébaud NB; Devillard R
    Biofabrication; 2019 Jul; 11(4):045002. PubMed ID: 31151125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprinting Stem Cells in Hydrogel for In Situ Surgical Application: A Case for Articular Cartilage.
    Duchi S; Onofrillo C; O'Connell C; Wallace GG; Choong P; Di Bella C
    Methods Mol Biol; 2020; 2140():145-157. PubMed ID: 32207110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of functional biomaterials for tissue engineering.
    Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S
    Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting.
    Kérourédan O; Bourget JM; Rémy M; Crauste-Manciet S; Kalisky J; Catros S; Thébaud NB; Devillard R
    J Mater Sci Mater Med; 2019 Feb; 30(2):28. PubMed ID: 30747358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.
    Gao G; Hubbell K; Schilling AF; Dai G; Cui X
    Methods Mol Biol; 2017; 1612():391-398. PubMed ID: 28634958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing Frontiers in Bone Bioprinting.
    Ashammakhi N; Hasan A; Kaarela O; Byambaa B; Sheikhi A; Gaharwar AK; Khademhosseini A
    Adv Healthc Mater; 2019 Apr; 8(7):e1801048. PubMed ID: 30734530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering].
    Liao J; Wang S; Chen J; Xie H; Zhou J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 42(2):221-225. PubMed ID: 28255127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting using stem cells.
    Ong CS; Yesantharao P; Huang CY; Mattson G; Boktor J; Fukunishi T; Zhang H; Hibino N
    Pediatr Res; 2018 Jan; 83(1-2):223-231. PubMed ID: 28985202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite.
    Catros S; Fricain JC; Guillotin B; Pippenger B; Bareille R; Remy M; Lebraud E; Desbat B; Amédée J; Guillemot F
    Biofabrication; 2011 Jun; 3(2):025001. PubMed ID: 21527813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration.
    Bourget JM; Kérourédan O; Medina M; Rémy M; Thébaud NB; Bareille R; Chassande O; Amédée J; Catros S; Devillard R
    Biomed Res Int; 2016; 2016():3569843. PubMed ID: 27833916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing.
    Wang Y; Gao M; Wang D; Sun L; Webster TJ
    Int J Nanomedicine; 2020; 15():215-226. PubMed ID: 32021175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering.
    Duarte Campos DF; Blaeser A; Buellesbach K; Sen KS; Xun W; Tillmann W; Fischer H
    Adv Healthc Mater; 2016 Jun; 5(11):1336-45. PubMed ID: 27072652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in bioprinting techniques: approaches, applications and future prospects.
    Li J; Chen M; Fan X; Zhou H
    J Transl Med; 2016 Sep; 14():271. PubMed ID: 27645770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.