These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28496184)

  • 1. El Niño increases the risk of lower Mississippi River flooding.
    Munoz SE; Dee SG
    Sci Rep; 2017 May; 7(1):1772. PubMed ID: 28496184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climatic control of Mississippi River flood hazard amplified by river engineering.
    Munoz SE; Giosan L; Therrell MD; Remo JWF; Shen Z; Sullivan RM; Wiman C; O'Donnell M; Donnelly JP
    Nature; 2018 Apr; 556(7699):95-98. PubMed ID: 29620734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong influence of El Niño Southern Oscillation on flood risk around the world.
    Ward PJ; Jongman B; Kummu M; Dettinger MD; Sperna Weiland FC; Winsemius HC
    Proc Natl Acad Sci U S A; 2014 Nov; 111(44):15659-64. PubMed ID: 25331867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ENSO and disaster: droughts, floods and El Niño/Southern Oscillation warm events.
    Dilley M; Heyman BN
    Disasters; 1995 Sep; 19(3):181-93. PubMed ID: 7552108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Series Study of Associations between Rates of People Affected by Disasters and the El Niño Southern Oscillation (ENSO) Cycle.
    Lam HCY; Haines A; McGregor G; Chan EYY; Hajat S
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31466421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of recent climatic events on the surface water storage of the Tonle Sap Lake.
    Frappart F; Biancamaria S; Normandin C; Blarel F; Bourrel L; Aumont M; Azemar P; Vu PL; Le Toan T; Lubac B; Darrozes J
    Sci Total Environ; 2018 Sep; 636():1520-1533. PubMed ID: 29913613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. El Niño and human health.
    Kovats RS
    Bull World Health Organ; 2000; 78(9):1127-35. PubMed ID: 11019461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decadal-Scale Forecasting of Climate Drivers for Marine Applications.
    Salinger J; Hobday AJ; Matear RJ; O'Kane TJ; Risbey JS; Dunstan P; Eveson JP; Fulton EA; Feng M; Plagányi ÉE; Poloczanska ES; Marshall AG; Thompson PA
    Adv Mar Biol; 2016; 74():1-68. PubMed ID: 27573049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking El Niño Southern Oscillation for early drought detection in tropical climates: The Ecuadorian coast.
    Zambrano Mera YE; Rivadeneira Vera JF; Pérez-Martín MÁ
    Sci Total Environ; 2018 Dec; 643():193-207. PubMed ID: 29936162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2015-16 floods and droughts in China, and its response to the strong El Niño.
    Ma F; Ye A; You J; Duan Q
    Sci Total Environ; 2018 Jun; 627():1473-1484. PubMed ID: 30857109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Drought and Flood Variations on a 200-Year Scale Based on Historical Environmental Information in Western China.
    Liu Y; Wen Y; Zhao Y; Hu H
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detrital phosphorus as a proxy of flooding events in the Changjiang River Basin.
    Meng J; Yao P; Bianchi TS; Li D; Zhao B; Xu B; Yu Z
    Sci Total Environ; 2015 Jun; 517():22-30. PubMed ID: 25710622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adapting to Climate Change in the Upper Mississippi River Basin: Exploring Stakeholder Perspectives on River System Management and Flood Risk Reduction.
    Reed T; Mason LR; Ekenga CC
    Environ Health Insights; 2020; 14():1178630220984153. PubMed ID: 33447043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Intensifying Precipitation on Coastal River Flooding and Compound River-Storm Surge Events, Northeast Gulf of Mexico.
    Dykstra SL; Dzwonkowski B
    Water Resour Res; 2021 Nov; 57(11):e2020WR029363. PubMed ID: 35864887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. El Niño physics and El Niño predictability.
    Clarke AJ
    Ann Rev Mar Sci; 2014; 6():79-99. PubMed ID: 24405425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Yangtze River streamflow based on deep learning neural network with El Niño-Southern Oscillation.
    Ha S; Liu D; Mu L
    Sci Rep; 2021 Jun; 11(1):11738. PubMed ID: 34083594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability, trends, and teleconnections of stream flows with large-scale climate signals in the Omo-Ghibe River Basin, Ethiopia.
    Degefu MA; Bewket W
    Environ Monit Assess; 2017 Apr; 189(4):142. PubMed ID: 28258340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the association between climate variability and the Nile's water level fluctuations and water storage changes during 1992-2016.
    Khaki M; Awange J; Forootan E; Kuhn M
    Sci Total Environ; 2018 Dec; 645():1509-1521. PubMed ID: 30248872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. El Niño and health.
    Kovats RS; Bouma MJ; Hajat S; Worrall E; Haines A
    Lancet; 2003 Nov; 362(9394):1481-9. PubMed ID: 14602445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex picture for likelihood of ENSO-driven flood hazard.
    Emerton R; Cloke HL; Stephens EM; Zsoter E; Woolnough SJ; Pappenberger F
    Nat Commun; 2017 Mar; 8():14796. PubMed ID: 28294113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.