BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2849625)

  • 1. Role of midgut electrogenic K+ pump potential difference in regulating lumen K+ and pH in larval lepidoptera.
    Dow JA; Harvey WR
    J Exp Biol; 1988 Nov; 140():455-63. PubMed ID: 2849625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut.
    Wieczorek H; Weerth S; Schindlbeck M; Klein U
    J Biol Chem; 1989 Jul; 264(19):11143-8. PubMed ID: 2472389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray microanalysis of elements in frozen-hydrated sections of an electrogenic K+ transport system: the posterior midgut of tobacco hornworm (Manduca sexta) in vivo and in vitro.
    Dow JA; Gupta BL; Hall TA; Harvey WR
    J Membr Biol; 1984; 77(3):223-41. PubMed ID: 6699905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect midgut K(+) secretion: concerted run-down of apical/basolateral transporters with extra-/intracellular acidity.
    Zeiske W; Meyer H; Wieczorek H
    J Exp Biol; 2002 Feb; 205(Pt 4):463-74. PubMed ID: 11893760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving forces and pathways for H+ and K+ transport in insect midgut goblet cells.
    Moffett DF; Koch A
    J Exp Biol; 1992 Nov; 172():403-15. PubMed ID: 1337097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron probe X-ray microanalysis of the effects of Bacillus thuringiensis var kurstaki crystal protein insecticide on ions in an electrogenic K+-transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro.
    Gupta BL; Dow JA; Hall TA; Harvey WR
    J Cell Sci; 1985 Mar; 74():137-52. PubMed ID: 2411741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: molecular analysis of electrogenic potassium transport in the tobacco hornworm midgut.
    Wieczorek H
    J Exp Biol; 1992 Nov; 172():335-43. PubMed ID: 1491230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High pH in the ectoperitrophic space of the larval lepidopteran midgut.
    Gringorten JL; Crawford DN; Harvey WR
    J Exp Biol; 1993 Oct; 183():353-9. PubMed ID: 8245766
    [No Abstract]   [Full Text] [Related]  

  • 10. pH GRADIENTS IN LEPIDOPTERAN MIDGUT.
    Dow JA
    J Exp Biol; 1992 Nov; 172(Pt 1):355-375. PubMed ID: 9874748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport.
    Cioffi M
    Tissue Cell; 1979; 11(3):467-79. PubMed ID: 494237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal membrane uptake in potassium-secreting cells of midgut of tobacco hornworm (Manduca sexta).
    Chao AC; Koch AR; Moffett DF
    Am J Physiol; 1990 Jan; 258(1 Pt 2):R112-9. PubMed ID: 2301622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane.
    Wieczorek H; Putzenlechner M; Zeiske W; Klein U
    J Biol Chem; 1991 Aug; 266(23):15340-7. PubMed ID: 1831202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proline transport into brush border membrane vesicles from the midgut of Manduca sexta larvae.
    Reuveni M; Dunn PE
    Comp Biochem Physiol Comp Physiol; 1994 Apr; 107(4):685-91. PubMed ID: 7911413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K+-dependent phenylalanine uptake in membrane vesicels isolated from the midgut of Philosamia cynthia larvae.
    Hanozet GM; Giordana B; Sacchi VF
    Biochim Biophys Acta; 1980 Mar; 596(3):481-6. PubMed ID: 7362826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely high pH in biological systems: a model for carbonate transport.
    Dow JA
    Am J Physiol; 1984 Apr; 246(4 Pt 2):R633-6. PubMed ID: 6144275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms associated with acidification and alkalization along the larval midgut of Musca domestica.
    Barroso IG; Santos CS; Bertotti M; Ferreira C; Terra WR
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Nov; 237():110535. PubMed ID: 31401310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus thuringiensis Cry1Ac toxin-binding and pore-forming activity in brush border membrane vesicles prepared from anterior and posterior midgut regions of lepidopteran larvae.
    Rodrigo-Simón A; Caccia S; Ferré J
    Appl Environ Microbiol; 2008 Mar; 74(6):1710-6. PubMed ID: 18223107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of lipophorin binding to the midgut of larval Manduca sexta.
    Gondim KC; Wells MA
    Insect Biochem Mol Biol; 2000 May; 30(5):405-13. PubMed ID: 10745164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic circuit analysis of K+/H+ antiport and amino acid/K+ symport energized by a proton-motive force in Manduca sexta larval midgut vesicles.
    Martin FG; Harvey WR
    J Exp Biol; 1994 Nov; 196():77-92. PubMed ID: 7823047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.