These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28496449)

  • 1. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size.
    Grimplet J; Tello J; Laguna N; Ibáñez J
    Front Plant Sci; 2017; 8():632. PubMed ID: 28496449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic, Hormonal, and Genomic Variation Among
    Grimplet J; Ibáñez S; Baroja E; Tello J; Ibáñez J
    Front Plant Sci; 2018; 9():1917. PubMed ID: 30666262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size.
    Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD
    BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
    Deluc LG; Grimplet J; Wheatley MD; Tillett RL; Quilici DR; Osborne C; Schooley DA; Schlauch KA; Cushman JC; Cramer GR
    BMC Genomics; 2007 Nov; 8():429. PubMed ID: 18034876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time.
    Theine J; Holtgräwe D; Herzog K; Schwander F; Kicherer A; Hausmann L; Viehöver P; Töpfer R; Weisshaar B
    BMC Plant Biol; 2021 Jul; 21(1):327. PubMed ID: 34233614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early Canopy Management Practices Differentially Modulate Fruit Set, Fruit Yield, and Berry Composition at Harvest Depending on the Grapevine Cultivar.
    Mataffo A; Scognamiglio P; Molinaro C; Corrado G; Basile B
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GA
    Upadhyay A; Maske S; Jogaiah S; Kadoo NY; Gupta VS
    Funct Integr Genomics; 2018 Jul; 18(4):439-455. PubMed ID: 29626310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison.
    Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C
    BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatic variants for seed and fruit set in grapevine.
    Costantini L; Moreno-Sanz P; Nwafor CC; Lorenzi S; Marrano A; Cristofolini F; Gottardini E; Raimondi S; Ruffa P; Gribaudo I; Schneider A; Grando MS
    BMC Plant Biol; 2021 Mar; 21(1):135. PubMed ID: 33711928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin.
    Cramer GR; Ghan R; Schlauch KA; Tillett RL; Heymann H; Ferrarini A; Delledonne M; Zenoni S; Fasoli M; Pezzotti M
    BMC Plant Biol; 2014 Dec; 14():370. PubMed ID: 25524329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in the miR396 binding site of the growth-regulating factor gene VvGRF4 modulate inflorescence architecture in grapevine.
    Rossmann S; Richter R; Sun H; Schneeberger K; Töpfer R; Zyprian E; Theres K
    Plant J; 2020 Mar; 101(5):1234-1248. PubMed ID: 31663642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association analysis of grapevine bunch traits using a comprehensive approach.
    Tello J; Torres-Pérez R; Grimplet J; Ibáñez J
    Theor Appl Genet; 2016 Feb; 129(2):227-42. PubMed ID: 26536891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomics of the grape berry shrivel ripening disorder.
    Savoi S; Herrera JC; Forneck A; Griesser M
    Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biometrics Assessment of Cluster- and Berry-Related Traits of Muscadine Grape Population.
    Campbell J; Sarkhosh A; Habibi F; Ismail A; Gajjar P; Zhongbo R; Tsolova V; El-Sharkawy I
    Plants (Basel); 2021 May; 10(6):. PubMed ID: 34073423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality.
    Zombardo A; Crosatti C; Bagnaresi P; Bassolino L; Reshef N; Puccioni S; Faccioli P; Tafuri A; Delledonne M; Fait A; Storchi P; Cattivelli L; Mica E
    BMC Genomics; 2020 Jul; 21(1):468. PubMed ID: 32641089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of grapevine AINTEGUMENTA-like genes is associated with variation in ovary and berry size.
    Chialva C; Eichler E; Grissi C; Muñoz C; Gomez-Talquenca S; Martínez-Zapater JM; Lijavetzky D
    Plant Mol Biol; 2016 May; 91(1-2):67-80. PubMed ID: 26843119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.
    Rienth M; Torregrosa L; Luchaire N; Chatbanyong R; Lecourieux D; Kelly MT; Romieu C
    BMC Plant Biol; 2014 Apr; 14():108. PubMed ID: 24774299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
    Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W
    BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential behavior within a grapevine cluster: decreased ethylene-related gene expression dependent on auxin transport is correlated with low abscission of first developed berries.
    Kühn N; Abello C; Godoy F; Delrot S; Arce-Johnson P
    PLoS One; 2014; 9(11):e111258. PubMed ID: 25365421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gibberellin causes wide transcriptional modifications in the early stage of grape cluster development.
    Shiri Y; Solouki M; Ebrahimie E; Emamjomeh A; Zahiri J
    Genomics; 2020 Jan; 112(1):820-830. PubMed ID: 31136791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.