These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28497245)

  • 1. Single species growth consuming inorganic carbon with internal storage in a poorly mixed habitat.
    Hsu SB; Lam KY; Wang FB
    J Math Biol; 2017 Dec; 75(6-7):1775-1825. PubMed ID: 28497245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical analysis of a chemostat system modeling the competition for light and inorganic carbon with internal storage.
    Tsai FY; Wang FB
    Math Biosci Eng; 2018 Dec; 16(1):205-221. PubMed ID: 30674117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition and coexistence in flowing habitats with a hydraulic storage zone.
    Grover JP; Hsu SB; Wang FB
    Math Biosci; 2009 Nov; 222(1):42-52. PubMed ID: 19706299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of light on the growth of non-nitrogen-fixing and nitrogen-fixing phytoplankton in an aquatic system.
    Wolkowicz GS; Yuan Y
    J Math Biol; 2016 May; 72(6):1663-92. PubMed ID: 26316327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is storage an adaptation to spatial variation in resource availability?
    Grover JP
    Am Nat; 2009 Feb; 173(2):E44-61. PubMed ID: 19117425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species persistence decreases with habitat fragmentation: an analysis in periodic stochastic environments.
    Roques L; Stoica RS
    J Math Biol; 2007 Aug; 55(2):189-205. PubMed ID: 17294236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.
    Peng R; Zhao XQ
    J Math Biol; 2016 Feb; 72(3):755-91. PubMed ID: 26063527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resource storage and competition with spatial and temporal variation in resource availability.
    Grover JP
    Am Nat; 2011 Nov; 178(5):E124-48. PubMed ID: 22030738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biological carbon consumption in a high CO2 ocean.
    Riebesell U; Schulz KG; Bellerby RG; Botros M; Fritsche P; Meyerhöfer M; Neill C; Nondal G; Oschlies A; Wohlers J; Zöllner E
    Nature; 2007 Nov; 450(7169):545-8. PubMed ID: 17994008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton.
    Clark DR; Flynn KJ
    Proc Biol Sci; 2000 May; 267(1447):953-9. PubMed ID: 10874743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon concentrating mechanisms in eukaryotic marine phytoplankton.
    Reinfelder JR
    Ann Rev Mar Sci; 2011; 3():291-315. PubMed ID: 21329207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling and analysis of harmful algal blooms in flowing habitats.
    Hsu SB; Wang FB; Zhao XQ
    Math Biosci Eng; 2019 Jul; 16(6):6728-6752. PubMed ID: 31698585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems.
    Pellacci B; Verzini G
    J Math Biol; 2018 May; 76(6):1357-1386. PubMed ID: 28889217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence in a Two-Dimensional Moving-Habitat Model.
    Phillips A; Kot M
    Bull Math Biol; 2015 Nov; 77(11):2125-59. PubMed ID: 26582361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem.
    Thingstad TF; Bellerby RG; Bratbak G; Børsheim KY; Egge JK; Heldal M; Larsen A; Neill C; Nejstgaard J; Norland S; Sandaa RA; Skjoldal EF; Tanaka T; Thyrhaug R; Töpper B
    Nature; 2008 Sep; 455(7211):387-90. PubMed ID: 18716617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of ecosystem: global properties of a general predator-prey model.
    Korobeinikov A
    Math Med Biol; 2009 Dec; 26(4):309-21. PubMed ID: 19380507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bounds for the critical speed of climate-driven moving-habitat models.
    Kot M; Phillips A
    Math Biosci; 2015 Apr; 262():65-72. PubMed ID: 25645183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate Change and Integrodifference Equations in a Stochastic Environment.
    Bouhours J; Lewis MA
    Bull Math Biol; 2016 Sep; 78(9):1866-1903. PubMed ID: 27647008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algae mediate submerged macrophyte response to nutrient and dissolved inorganic carbon loading: a mesocosm study on different species.
    Xie D; Yu D; You WH; Wang LG
    Chemosphere; 2013 Oct; 93(7):1301-8. PubMed ID: 23958444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meandering Rivers: How Important is Lateral Variability for Species Persistence?
    Jin Y; Lutscher F; Pei Y
    Bull Math Biol; 2017 Dec; 79(12):2954-2985. PubMed ID: 28983765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.