BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28497683)

  • 1. A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C
    Cui P; Choi JH; Zeng C; Li Z; Yang J; Zhang Z
    J Am Chem Soc; 2017 May; 139(21):7196-7202. PubMed ID: 28497683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic Simulations of Graphene Growth: From Kinetics to Mechanism.
    Qiu Z; Li P; Li Z; Yang J
    Acc Chem Res; 2018 Mar; 51(3):728-735. PubMed ID: 29493220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic resolution of nitrogen-doped graphene on Cu foils.
    Wang C; Schouteden K; Wu QH; Li Z; Jiang J; Van Haesendonck C
    Nanotechnology; 2016 Sep; 27(36):365702. PubMed ID: 27479275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Graphene Stacking on the Performance of Methane Sensor: A First-Principles Study on the Adsorption, Band Gap and Doping of Graphene.
    Yang N; Yang D; Zhang G; Chen L; Liu D; Cai M; Fan X
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: evidence of low nitrogen doping and high charge transfer.
    Velez-Fort E; Mathieu C; Pallecchi E; Pigneur M; Silly MG; Belkhou R; Marangolo M; Shukla A; Sirotti F; Ouerghi A
    ACS Nano; 2012 Dec; 6(12):10893-900. PubMed ID: 23148722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of grain boundaries in graphene growth on superstructured Mn-Cu(111) surface.
    Chen W; Chen H; Lan H; Cui P; Schulze TP; Zhu W; Zhang Z
    Phys Rev Lett; 2012 Dec; 109(26):265507. PubMed ID: 23368584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition.
    Xue Y; Wu B; Jiang L; Guo Y; Huang L; Chen J; Tan J; Geng D; Luo B; Hu W; Yu G; Liu Y
    J Am Chem Soc; 2012 Jul; 134(27):11060-3. PubMed ID: 22721268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopant morphology as the factor limiting graphene conductivity.
    Hofmann M; Hsieh YP; Chang KW; Tsai HG; Chen TT
    Sci Rep; 2015 Nov; 5():17393. PubMed ID: 26617255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh conductivity of graphene nanoribbons doped with ordered nitrogen.
    Li XF; Yan WW; Rao JR; Liu DX; Zhang XH; Cao X; Luo Y
    Nanoscale Adv; 2019 Nov; 1(11):4359-4364. PubMed ID: 36134412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular adsorbates as probes of the local properties of doped graphene.
    Pham VD; Joucken F; Repain V; Chacon C; Bellec A; Girard Y; Rousset S; Sporken R; dos Santos MC; Lagoute J
    Sci Rep; 2016 Apr; 6():24796. PubMed ID: 27097555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition.
    Wang C; Zhou Y; He L; Ng TW; Hong G; Wu QH; Gao F; Lee CS; Zhang W
    Nanoscale; 2013 Jan; 5(2):600-5. PubMed ID: 23203220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition.
    Yu Q; Jauregui LA; Wu W; Colby R; Tian J; Su Z; Cao H; Liu Z; Pandey D; Wei D; Chung TF; Peng P; Guisinger NP; Stach EA; Bao J; Pei SS; Chen YP
    Nat Mater; 2011 Jun; 10(6):443-9. PubMed ID: 21552269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulating Chemically Doped Graphene via Atomic Layer Deposition.
    Black A; Urbanos FJ; Osorio MR; Miranda R; Vázquez de Parga AL; Granados D
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8190-8196. PubMed ID: 29461040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniform doping of graphene close to the Dirac point by polymer-assisted assembly of molecular dopants.
    He H; Kim KH; Danilov A; Montemurro D; Yu L; Park YW; Lombardi F; Bauch T; Moth-Poulsen K; Iakimov T; Yakimova R; Malmberg P; Müller C; Kubatkin S; Lara-Avila S
    Nat Commun; 2018 Sep; 9(1):3956. PubMed ID: 30262825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable hole doping of graphene for low electrical resistance and high optical transparency.
    Tongay S; Berke K; Lemaitre M; Nasrollahi Z; Tanner DB; Hebard AF; Appleton BR
    Nanotechnology; 2011 Oct; 22(42):425701. PubMed ID: 21934196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hole defects and nitrogen doping in graphene: implication for supercapacitor applications.
    Luo G; Liu L; Zhang J; Li G; Wang B; Zhao J
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11184-93. PubMed ID: 24134508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction.
    Qian W; Cui X; Hao R; Hou Y; Zhang Z
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2259-64. PubMed ID: 21644571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling Nitrogen Doping in Graphene with Atomic Precision: Synthesis and Characterization.
    Granzier-Nakajima T; Fujisawa K; Anil V; Terrones M; Yeh YT
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30871112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.