These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28497792)

  • 21. cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72.
    Werner-Allen JW; Lee CJ; Liu P; Nicely NI; Wang S; Greenleaf AL; Zhou P
    J Biol Chem; 2011 Feb; 286(7):5717-26. PubMed ID: 21159777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes.
    Ni Z; Schwartz BE; Werner J; Suarez JR; Lis JT
    Mol Cell; 2004 Jan; 13(1):55-65. PubMed ID: 14731394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.
    Meinhart A; Cramer P
    Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heptad-Specific Phosphorylation of RNA Polymerase II CTD.
    Schüller R; Forné I; Straub T; Schreieck A; Texier Y; Shah N; Decker TM; Cramer P; Imhof A; Eick D
    Mol Cell; 2016 Jan; 61(2):305-14. PubMed ID: 26799765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multivalency regulates activity in an intrinsically disordered transcription factor.
    Clark S; Myers JB; King A; Fiala R; Novacek J; Pearce G; Heierhorst J; Reichow SL; Barbar EJ
    Elife; 2018 May; 7():. PubMed ID: 29714690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II.
    Fabrega C; Shen V; Shuman S; Lima CD
    Mol Cell; 2003 Jun; 11(6):1549-61. PubMed ID: 12820968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Fcp1 phosphatase activity contributes to setting an intense transcription rate required in Drosophila nurse and follicular cells for egg production.
    Juhász I; Villányi Z; Tombácz I; Boros IM
    Gene; 2012 Nov; 509(1):60-7. PubMed ID: 22903034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability.
    Chapman RD; Palancade B; Lang A; Bensaude O; Eick D
    Nucleic Acids Res; 2004; 32(1):35-44. PubMed ID: 14704341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments.
    Bienkiewicz EA; Moon Woody A; Woody RW
    J Mol Biol; 2000 Mar; 297(1):119-33. PubMed ID: 10704311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The repetitive C-terminal domain of RNA polymerase II: multiple conformational states drive the transcription cycle.
    Lin PS; Tremeau-Bravard A; Dahmus ME
    Chem Rec; 2003; 3(4):235-45. PubMed ID: 14595832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells.
    Hanyu-Nakamura K; Sonobe-Nojima H; Tanigawa A; Lasko P; Nakamura A
    Nature; 2008 Feb; 451(7179):730-3. PubMed ID: 18200011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cdk9 is an essential kinase in Drosophila that is required for heat shock gene expression, histone methylation and elongation factor recruitment.
    Eissenberg JC; Shilatifard A; Dorokhov N; Michener DE
    Mol Genet Genomics; 2007 Feb; 277(2):101-14. PubMed ID: 17001490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A structural perspective of CTD function.
    Meinhart A; Kamenski T; Hoeppner S; Baumli S; Cramer P
    Genes Dev; 2005 Jun; 19(12):1401-15. PubMed ID: 15964991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA polymerase II carboxy-terminal domain with multiple connections.
    Cho EJ
    Exp Mol Med; 2007 Jun; 39(3):247-54. PubMed ID: 17603278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dynein light chain 8 (LC8) binds predominantly "in-register" to a multivalent intrinsically disordered partner.
    Reardon PN; Jara KA; Rolland AD; Smith DA; Hoang HTM; Prell JS; Barbar EJ
    J Biol Chem; 2020 Apr; 295(15):4912-4922. PubMed ID: 32139510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The RNA polymerase II CTD "orphan" residues: Emerging insights into the functions of Tyr-1, Thr-4, and Ser-7.
    Yurko NM; Manley JL
    Transcription; 2018; 9(1):30-40. PubMed ID: 28771071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular evolution of the RNA polymerase II CTD.
    Chapman RD; Heidemann M; Hintermair C; Eick D
    Trends Genet; 2008 Jun; 24(6):289-96. PubMed ID: 18472177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II.
    Venkat Ramani MK; Yang W; Irani S; Zhang Y
    J Mol Biol; 2021 Jul; 433(14):166912. PubMed ID: 33676925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paip2 cooperates with Cbp80 at an active promoter and participates in RNA Polymerase II phosphorylation in Drosophila.
    Kachaev ZM; Lebedeva LA; Shaposhnikov AV; Moresco JJ; Yates JR; Schedl P; Shidlovskii YV
    FEBS Lett; 2019 May; 593(10):1102-1112. PubMed ID: 31001806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
    Heidemann M; Hintermair C; Voß K; Eick D
    Biochim Biophys Acta; 2013 Jan; 1829(1):55-62. PubMed ID: 22982363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.