These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 28498109)

  • 1. Ultra-stiff metallic glasses through bond energy density design.
    Schnabel V; Köhler M; Music D; Bednarcik J; Clegg WJ; Raabe D; Schneider JM
    J Phys Condens Matter; 2017 Jul; 29(26):265502. PubMed ID: 28498109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness and toughness prediction of Co–Fe–Ta–B metallic glasses, alloyed with Y, Zr, Nb, Mo, Hf, W, C, N and O by ab initio molecular dynamics.
    Schnabel V; Evertz S; Rueß H; Music D; Schneider JM
    J Phys Condens Matter; 2015 Mar; 27(10):105502. PubMed ID: 25710383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio molecular dynamics model for density, elastic properties and short range order of Co-Fe-Ta-B metallic glass thin films.
    Hostert C; Music D; Bednarcik J; Keckes J; Kapaklis V; Hjörvarsson B; Schneider JM
    J Phys Condens Matter; 2011 Nov; 23(47):475401. PubMed ID: 22056956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum mechanically guided design of Co43Fe20Ta(5.5)X(31.5) (X=B, Si, P, S) metallic glasses.
    Hostert C; Music D; Bednarcik J; Keckes J; Schneider JM
    J Phys Condens Matter; 2012 May; 24(17):175402. PubMed ID: 22469705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in bulk metallic glasses for biomedical applications.
    Li HF; Zheng YF
    Acta Biomater; 2016 May; 36():1-20. PubMed ID: 27045349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-density to high-density transition in Ce75Al23Si2 metallic glass.
    Zeng QS; Fang YZ; Lou HB; Gong Y; Wang XD; Yang K; Li AG; Yan S; Lathe C; Wu FM; Yu XH; Jiang JZ
    J Phys Condens Matter; 2010 Sep; 22(37):375404. PubMed ID: 21403196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition formulas of Fe-based transition metals-metalloid bulk metallic glasses derived from dual-cluster model of binary eutectics.
    Naz GJ; Dong D; Geng Y; Wang Y; Dong C
    Sci Rep; 2017 Aug; 7(1):9150. PubMed ID: 28831157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal expansion of Pd-based metallic glasses by ab initio methods and high energy X-ray diffraction.
    Evertz S; Music D; Schnabel V; Bednarcik J; Schneider JM
    Sci Rep; 2017 Nov; 7(1):15744. PubMed ID: 29146969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses.
    Das S; Choudhary K; Chernatynskiy A; Choi Yim H; Bandyopadhyay AK; Mukherjee S
    J Phys Condens Matter; 2016 Jun; 28(21):216003. PubMed ID: 27143686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses.
    Schnabel V; Jaya BN; Köhler M; Music D; Kirchlechner C; Dehm G; Raabe D; Schneider JM
    Sci Rep; 2016 Nov; 6():36556. PubMed ID: 27819318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.
    Cramer AJ; Cole JM; FitzGerald V; Honkimaki V; Roberts MA; Brennan T; Martin RA; Saunders GA; Newport RJ
    Phys Chem Chem Phys; 2013 Jun; 15(22):8529-43. PubMed ID: 23518599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electronic criterion for assessing intrinsic brittleness of metallic glasses.
    Wang XF; Jones TE; Wu Y; Lu ZP; Halas S; Durakiewicz T; Eberhart ME
    J Chem Phys; 2014 Jul; 141(2):024503. PubMed ID: 25028023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses.
    Sedighi S; Kirk DW; Singh CV; Thorpe SJ
    J Chem Phys; 2015 Sep; 143(11):114509. PubMed ID: 26395721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural investigation and mechanical properties of a representative of a new class of materials: nanograined metallic glasses.
    Chen N; Louzguine-Luzgin DV; Xie GQ; Sharma P; Perepezko JH; Esashi M; Yavari AR; Inoue A
    Nanotechnology; 2013 Feb; 24(4):045610. PubMed ID: 23299703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses.
    Khonik SV; Granato AV; Joncich DM; Pompe A; Khonik VA
    Phys Rev Lett; 2008 Feb; 100(6):065501. PubMed ID: 18352488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The atomic-scale nucleation mechanism of NiTi metallic glasses upon isothermal annealing studied via molecular dynamics simulations.
    Li Y; Li J; Liu B
    Phys Chem Chem Phys; 2015 Oct; 17(40):27127-35. PubMed ID: 26414845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca-Mg-Zn bulk metallic glasses as bioresorbable metals.
    Cao JD; Kirkland NT; Laws KJ; Birbilis N; Ferry M
    Acta Biomater; 2012 Jul; 8(6):2375-83. PubMed ID: 22406910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses.
    Li G; Wang YY; Liaw PK; Li YC; Liu RP
    Phys Rev Lett; 2012 Sep; 109(12):125501. PubMed ID: 23005956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of zirconium metallic glass.
    Zhang J; Zhao Y
    Nature; 2004 Jul; 430(6997):332-5. PubMed ID: 15254533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels.
    Subramanian B
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():48-56. PubMed ID: 25492171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.