These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
570 related articles for article (PubMed ID: 28498623)
1. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation. Ansari A; Ansari M; Singha A; Rajaraman G Chemistry; 2017 Jul; 23(42):10110-10125. PubMed ID: 28498623 [TBL] [Abstract][Full Text] [Related]
2. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe Ansari M; Senthilnathan D; Rajaraman G Chem Sci; 2020 Oct; 11(39):10669-10687. PubMed ID: 33209248 [TBL] [Abstract][Full Text] [Related]
3. Comparative oxidative ability of mononuclear and dinuclear high-valent iron-oxo species towards the activation of methane: does the axial/bridge atom modulate the reactivity? Ansari M; Rajaraman G Dalton Trans; 2023 Jan; 52(2):308-325. PubMed ID: 36504243 [TBL] [Abstract][Full Text] [Related]
5. Oxidation of methane by an N-bridged high-valent diiron-oxo species: electronic structure implications on the reactivity. Ansari M; Vyas N; Ansari A; Rajaraman G Dalton Trans; 2015 Sep; 44(34):15232-43. PubMed ID: 25978584 [TBL] [Abstract][Full Text] [Related]
6. Substrate-dependent H/D kinetic isotope effects and the role of the di(μ-oxo)diiron(IV) core in soluble methane monooxygenase: a theoretical study. Mai BK; Kim Y Chemistry; 2014 May; 20(21):6532-41. PubMed ID: 24715359 [TBL] [Abstract][Full Text] [Related]
7. An abiotic analogue of the diiron(IV)oxo "diamond core" of soluble methane monooxygenase generated by direct activation of O2 in aqueous Fe(II)/EDTA solutions: thermodynamics and electronic structure. Bernasconi L; Belanzoni P; Baerends EJ Phys Chem Chem Phys; 2011 Sep; 13(33):15272-82. PubMed ID: 21776512 [TBL] [Abstract][Full Text] [Related]
8. Substrate-triggered activation of a synthetic [Fe2(μ-O)2] diamond core for C-H bond cleavage. Xue G; Pokutsa A; Que L J Am Chem Soc; 2011 Oct; 133(41):16657-67. PubMed ID: 21899336 [TBL] [Abstract][Full Text] [Related]
9. Highly Reactive Co Li Y; Handunneththige S; Farquhar ER; Guo Y; Talipov MR; Li F; Wang D J Am Chem Soc; 2019 Dec; 141(51):20127-20136. PubMed ID: 31794198 [TBL] [Abstract][Full Text] [Related]
10. Opening the Co Li Y; Handunneththige S; Xiong J; Guo Y; Talipov MR; Wang D J Am Chem Soc; 2020 Dec; 142(52):21670-21678. PubMed ID: 33325694 [TBL] [Abstract][Full Text] [Related]
11. Mössbauer and DFT study of the ferromagnetically coupled diiron(IV) precursor to a complex with an Fe(IV)(2)O(2) diamond core. Martinho M; Xue G; Fiedler AT; Que L; Bominaar EL; Münck E J Am Chem Soc; 2009 Apr; 131(16):5823-30. PubMed ID: 19338307 [TBL] [Abstract][Full Text] [Related]
12. Protonation of an oxo-bridged diiron unit gives two different iron centers: synthesis and structure of a new class of diiron(III)-μ-hydroxo bisporphyrins and the control of spin states by using counterions. Bhowmik S; Ghosh SK; Layek S; Verma HC; Rath SP Chemistry; 2012 Oct; 18(41):13025-37. PubMed ID: 22961941 [TBL] [Abstract][Full Text] [Related]
13. A bis-Phenolate Carbene-Supported bis-μ-Oxo Iron(IV/IV) Complex with a [Fe Gravogl L; Kass D; Pyschny O; Heinemann FW; Haumann M; Katz S; Hildebrandt P; Dau H; Swain A; García-Serres R; Ray K; Munz D; Meyer K J Am Chem Soc; 2024 Oct; 146(42):28757-28769. PubMed ID: 39382653 [TBL] [Abstract][Full Text] [Related]
14. O2 activation in a dinuclear Fe(II)/EDTA complex: spin surface crossing as a route to highly reactive Fe(IV)oxo species. Belanzoni P; Bernasconi L; Baerends EJ J Phys Chem A; 2009 Oct; 113(43):11926-37. PubMed ID: 19848430 [TBL] [Abstract][Full Text] [Related]
15. Reactivity of compound II: electronic structure analysis of methane hydroxylation by oxoiron(IV) porphyrin complexes. Rosa A; Ricciardi G Inorg Chem; 2012 Sep; 51(18):9833-45. PubMed ID: 22946694 [TBL] [Abstract][Full Text] [Related]
16. Oxidation state dependence of the geometry, electronic structure, and magnetic coupling in mixed oxo- and carboxylato-bridged manganese dimers. Delfs CD; Stranger R Inorg Chem; 2001 Jun; 40(13):3061-76. PubMed ID: 11399174 [TBL] [Abstract][Full Text] [Related]
17. Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme micro-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant. Mayilmurugan R; Stoeckli-Evans H; Suresh E; Palaniandavar M Dalton Trans; 2009 Jul; (26):5101-14. PubMed ID: 19562169 [TBL] [Abstract][Full Text] [Related]
18. Analysis of an alternative to the H-atom abstraction mechanism in methane C-H bond activation by nonheme iron(IV)-oxo oxidants. Tang H; Guan J; Liu H; Huang X Dalton Trans; 2013 Jul; 42(28):10260-70. PubMed ID: 23732441 [TBL] [Abstract][Full Text] [Related]
19. High-valent diiron species generated from N-bridged diiron phthalocyanine and H(2)O(2). Afanasiev P; Kudrik EV; Millet JM; Bouchu D; Sorokin AB Dalton Trans; 2011 Jan; 40(3):701-10. PubMed ID: 21072406 [TBL] [Abstract][Full Text] [Related]
20. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number. Huang SP; Shiota Y; Yoshizawa K Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]