These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 28498657)
1. Surface-Enhanced Raman Spectroscopy: A Facile and Rapid Method for the Chemical Component Study of Individual Atmospheric Aerosol. Fu Y; Kuppe C; Valev VK; Fu H; Zhang L; Chen J Environ Sci Technol; 2017 Jun; 51(11):6260-6267. PubMed ID: 28498657 [TBL] [Abstract][Full Text] [Related]
2. Extending surface enhanced Raman spectroscopy (SERS) of atmospheric aerosol particles to the accumulation mode (150-800 nm). Tirella PN; Craig RL; Tubbs DB; Olson NE; Lei Z; Ault AP Environ Sci Process Impacts; 2018 Nov; 20(11):1570-1580. PubMed ID: 30124713 [TBL] [Abstract][Full Text] [Related]
3. Au nanoring arrays as surface enhanced Raman spectroscopy substrate for chemical component study of individual atmospheric aerosol particle. Cheng H; Dong X; Yang Y; Feng Y; Wang T; Tahir MA; Zhang L; Fu H J Environ Sci (China); 2021 Feb; 100():11-17. PubMed ID: 33279023 [TBL] [Abstract][Full Text] [Related]
4. Surface Enhanced Raman Spectroscopy Enables Observations of Previously Undetectable Secondary Organic Aerosol Components at the Individual Particle Level. Craig RL; Bondy AL; Ault AP Anal Chem; 2015 Aug; 87(15):7510-4. PubMed ID: 26176648 [TBL] [Abstract][Full Text] [Related]
5. Cu/Ag Sphere Segment Void Array as Efficient Surface Enhanced Raman Spectroscopy Substrate for Detecting Individual Atmospheric Aerosol. Dong X; Ohnoutek L; Yang Y; Feng Y; Wang T; Tahir MA; Valev VK; Zhang L Anal Chem; 2019 Nov; 91(21):13647-13657. PubMed ID: 31580648 [TBL] [Abstract][Full Text] [Related]
6. Physicochemical analysis of individual atmospheric fine particles based on effective surface-enhanced Raman spectroscopy. Sun Z; Duan F; He K; Du J; Yang L; Li H; Ma T; Yang S J Environ Sci (China); 2019 Jan; 75():388-395. PubMed ID: 30473304 [TBL] [Abstract][Full Text] [Related]
7. Direct Observation of Particle-To-Particle Variability in Ambient Aerosol pH Using a Novel Analytical Approach Based on Surface-Enhanced Raman Spectroscopy. Yoo H; Seo D; Shin D; Ro CU Environ Sci Technol; 2024 May; 58(18):7977-7985. PubMed ID: 38664901 [TBL] [Abstract][Full Text] [Related]
8. Using Micro-Raman Spectroscopy to Investigate Chemical Composition, Mixing States, and Heterogeneous Reactions of Individual Atmospheric Particles. Wang M; Zheng N; Zhao D; Shang J; Zhu T Environ Sci Technol; 2021 Aug; 55(15):10243-10254. PubMed ID: 34286964 [TBL] [Abstract][Full Text] [Related]
9. Klarite as a label-free SERS-based assay: a promising approach for atmospheric bioaerosol detection. Tahir MA; Zhang X; Cheng H; Xu D; Feng Y; Sui G; Fu H; Valev VK; Zhang L; Chen J Analyst; 2019 Dec; 145(1):277-285. PubMed ID: 31746822 [TBL] [Abstract][Full Text] [Related]
10. A water probe for direct pH measurement of individual particles via micro-Raman spectroscopy. Cui X; Tang M; Zhu T J Environ Sci (China); 2025 Mar; 149():200-208. PubMed ID: 39181634 [TBL] [Abstract][Full Text] [Related]
11. Novel Single-Particle Analytical Technique for Submicron Atmospheric Aerosols: Combined Use of Dark-Field Scattering and Surface-Enhanced Raman Spectroscopy. Yoo H; Lee H; Park C; Shin D; Ro CU Anal Chem; 2022 Sep; 94(38):13028-13035. PubMed ID: 36107822 [TBL] [Abstract][Full Text] [Related]
12. Raman spectroscopy for profiling physical and chemical properties of atmospheric aerosol particles: A review. Estefany C; Sun Z; Hong Z; Du J Ecotoxicol Environ Saf; 2023 Jan; 249():114405. PubMed ID: 36508807 [TBL] [Abstract][Full Text] [Related]
13. Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance. Lee AK; Ling TY; Chan CK Faraday Discuss; 2008; 137():245-63; discussion 297-318. PubMed ID: 18214108 [TBL] [Abstract][Full Text] [Related]
14. Effects of meteorological conditions on aerosol composition and mixing state in Bakersfield, CA. Whiteaker JR; Suess DT; Prather KA Environ Sci Technol; 2002 Jun; 36(11):2345-53. PubMed ID: 12075789 [TBL] [Abstract][Full Text] [Related]
15. TOF-SIMS surface analysis of chemical components of size-fractioned urban aerosols in a typical heavy air pollution event in Beijing. Li W; Li H; Li J; Cheng X; Zhang Z; Chai F; Zhang H; Yang T; Duan P; Lu D; Chen Y J Environ Sci (China); 2018 Jul; 69():61-76. PubMed ID: 29941270 [TBL] [Abstract][Full Text] [Related]
16. Preliminary evaluation of micro-Raman spectrometry for the characterization of individual aerosol particles. Potgieter-Vermaak SS; Van Grieken R Appl Spectrosc; 2006 Jan; 60(1):39-47. PubMed ID: 16454909 [TBL] [Abstract][Full Text] [Related]
17. Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 μm in the Environment. Xu G; Cheng H; Jones R; Feng Y; Gong K; Li K; Fang X; Tahir MA; Valev VK; Zhang L Environ Sci Technol; 2020 Dec; 54(24):15594-15603. PubMed ID: 33095569 [TBL] [Abstract][Full Text] [Related]
18. Single-particle characterization of urban aerosol particles collected in three Korean cites using low-Z electron probe X-ray microanalysis. Ro CU; Kim H; Oh KY; Yea SK; Lee CB; Jang M; Van Grieken R Environ Sci Technol; 2002 Nov; 36(22):4770-6. PubMed ID: 12487298 [TBL] [Abstract][Full Text] [Related]
19. A preliminary analysis of the surface chemistry of atmospheric aerosol particles in a typical urban area of Beijing. Zhang Z; Li H; Liu H; Ni R; Li J; Deng L; Lu D; Cheng X; Duan P; Li W J Environ Sci (China); 2016 Sep; 47():71-81. PubMed ID: 27593274 [TBL] [Abstract][Full Text] [Related]
20. How salt lakes affect atmospheric new particle formation: A case study in Western Australia. Kamilli KA; Ofner J; Krause T; Sattler T; Schmitt-Kopplin P; Eitenberger E; Friedbacher G; Lendl B; Lohninger H; Schöler HF; Held A Sci Total Environ; 2016 Dec; 573():985-995. PubMed ID: 27599062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]