These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 28498846)
21. Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Peddada S; Yasui DH; LaSalle JM Hum Mol Genet; 2006 Jun; 15(12):2003-14. PubMed ID: 16682435 [TBL] [Abstract][Full Text] [Related]
22. A critique of the hypothesis that CA repeats are primary targets of neuronal MeCP2. Chhatbar K; Connelly J; Webb S; Kriaucionis S; Bird A Life Sci Alliance; 2022 Dec; 5(12):. PubMed ID: 36122935 [TBL] [Abstract][Full Text] [Related]
23. Abnormalities of cell packing density and dendritic complexity in the MeCP2 A140V mouse model of Rett syndrome/X-linked mental retardation. Jentarra GM; Olfers SL; Rice SG; Srivastava N; Homanics GE; Blue M; Naidu S; Narayanan V BMC Neurosci; 2010 Feb; 11():19. PubMed ID: 20163734 [TBL] [Abstract][Full Text] [Related]
24. Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing. Chhatbar K; Cholewa-Waclaw J; Shah R; Bird A; Sanguinetti G PLoS Genet; 2020 Oct; 16(10):e1009087. PubMed ID: 33048927 [TBL] [Abstract][Full Text] [Related]
25. A/T Run Geometry of B-form DNA Is Independent of Bound Methyl-CpG Binding Domain, Cytosine Methylation and Flanking Sequence. Chia JY; Tan WS; Ng CL; Hu NJ; Foo HL; Ho KL Sci Rep; 2016 Aug; 6():31210. PubMed ID: 27502833 [TBL] [Abstract][Full Text] [Related]
26. The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome. Miyake K; Hirasawa T; Soutome M; Itoh M; Goto Y; Endoh K; Takahashi K; Kudo S; Nakagawa T; Yokoi S; Taira T; Inazawa J; Kubota T BMC Neurosci; 2011 Aug; 12():81. PubMed ID: 21824415 [TBL] [Abstract][Full Text] [Related]
27. Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. Hansen JC; Ghosh RP; Woodcock CL IUBMB Life; 2010 Oct; 62(10):732-8. PubMed ID: 21031501 [TBL] [Abstract][Full Text] [Related]
28. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. Lavery LA; Ure K; Wan YW; Luo C; Trostle AJ; Wang W; Jin H; Lopez J; Lucero J; Durham MA; Castanon R; Nery JR; Liu Z; Goodell M; Ecker JR; Behrens MM; Zoghbi HY Elife; 2020 Mar; 9():. PubMed ID: 32159514 [TBL] [Abstract][Full Text] [Related]
29. The role of MeCP2 in the brain. Guy J; Cheval H; Selfridge J; Bird A Annu Rev Cell Dev Biol; 2011; 27():631-52. PubMed ID: 21721946 [TBL] [Abstract][Full Text] [Related]
30. Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research. Zachariah RM; Rastegar M Neural Plast; 2012; 2012():415825. PubMed ID: 22474603 [TBL] [Abstract][Full Text] [Related]
31. Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. Kumar A; Kamboj S; Malone BM; Kudo S; Twiss JL; Czymmek KJ; LaSalle JM; Schanen NC J Cell Sci; 2008 Apr; 121(Pt 7):1128-37. PubMed ID: 18334558 [TBL] [Abstract][Full Text] [Related]
32. The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis. Forlani G; Giarda E; Ala U; Di Cunto F; Salani M; Tupler R; Kilstrup-Nielsen C; Landsberger N Hum Mol Genet; 2010 Aug; 19(16):3114-23. PubMed ID: 20504995 [TBL] [Abstract][Full Text] [Related]
33. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Chen RZ; Akbarian S; Tudor M; Jaenisch R Nat Genet; 2001 Mar; 27(3):327-31. PubMed ID: 11242118 [TBL] [Abstract][Full Text] [Related]
34. MeCP2 Represses the Rate of Transcriptional Initiation of Highly Methylated Long Genes. Boxer LD; Renthal W; Greben AW; Whitwam T; Silberfeld A; Stroud H; Li E; Yang MG; Kinde B; Griffith EC; Bonev B; Greenberg ME Mol Cell; 2020 Jan; 77(2):294-309.e9. PubMed ID: 31784358 [TBL] [Abstract][Full Text] [Related]
35. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome. Brown K; Selfridge J; Lagger S; Connelly J; De Sousa D; Kerr A; Webb S; Guy J; Merusi C; Koerner MV; Bird A Hum Mol Genet; 2016 Feb; 25(3):558-70. PubMed ID: 26647311 [TBL] [Abstract][Full Text] [Related]
36. Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. Jordan C; Li HH; Kwan HC; Francke U BMC Med Genet; 2007 Jun; 8():36. PubMed ID: 17584923 [TBL] [Abstract][Full Text] [Related]
37. Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Ballestar E; Yusufzai TM; Wolffe AP Biochemistry; 2000 Jun; 39(24):7100-6. PubMed ID: 10852707 [TBL] [Abstract][Full Text] [Related]
38. Methylated cytosine and the brain: a new base for neuroscience. Tucker KL Neuron; 2001 Jun; 30(3):649-52. PubMed ID: 11430798 [TBL] [Abstract][Full Text] [Related]
39. Normal histone modifications on the inactive X chromosome in ICF and Rett syndrome cells: implications for methyl-CpG binding proteins. Gartler SM; Varadarajan KR; Luo P; Canfield TK; Traynor J; Francke U; Hansen RS BMC Biol; 2004 Sep; 2():21. PubMed ID: 15377381 [TBL] [Abstract][Full Text] [Related]
40. The methyl-CpG-binding protein MeCP2 and neurological disease. Bird A Biochem Soc Trans; 2008 Aug; 36(Pt 4):575-83. PubMed ID: 18631120 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]