BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28499014)

  • 1. Captive Ancestry Upwardly Biases Estimates of Relative Reproductive Success.
    Willoughby JR; Christie MR
    J Hered; 2017 Jul; 108(5):583-587. PubMed ID: 28499014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term demographic and genetic effects of releasing captive-born individuals into the wild.
    Willoughby JR; Christie MR
    Conserv Biol; 2019 Apr; 33(2):377-388. PubMed ID: 30168872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species.
    Farquharson KA; Hogg CJ; Grueber CE
    J Hered; 2017 Jul; 108(5):488-495. PubMed ID: 28379457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How much does inbreeding contribute to the reduced fitness of hatchery-born steelhead (Oncorhynchus mykiss) in the wild?
    Christie MR; French RA; Marine ML; Blouin MS
    J Hered; 2014; 105(1):111-9. PubMed ID: 24187426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild.
    Araki H; Cooper B; Blouin MS
    Biol Lett; 2009 Oct; 5(5):621-4. PubMed ID: 19515651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproductive success of captive-bred steelhead trout in the wild: evaluation of three hatchery programs in the Hood river.
    Araki H; Ardren WR; Olsen E; Cooper B; Blouin MS
    Conserv Biol; 2007 Feb; 21(1):181-90. PubMed ID: 17298524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation.
    Christie MR; Marine ML; French RA; Waples RS; Blouin MS
    Heredity (Edinb); 2012 Oct; 109(4):254-60. PubMed ID: 22805657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon.
    Hess MA; Rabe CD; Vogel JL; Stephenson JJ; Nelson DD; Narum SR
    Mol Ecol; 2012 Nov; 21(21):5236-50. PubMed ID: 23025818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic adaptation to captivity can occur in a single generation.
    Christie MR; Marine ML; French RA; Blouin MS
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):238-42. PubMed ID: 22184236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the reproductive success of early-generation hatchery fish in the wild.
    Christie MR; Ford MJ; Blouin MS
    Evol Appl; 2014 Sep; 7(8):883-96. PubMed ID: 25469167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A meta-analysis of birth-origin effects on reproduction in diverse captive environments.
    Farquharson KA; Hogg CJ; Grueber CE
    Nat Commun; 2018 Mar; 9(1):1055. PubMed ID: 29535319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term evaluation of fitness and demographic effects of a Chinook Salmon supplementation program.
    Janowitz-Koch I; Rabe C; Kinzer R; Nelson D; Hess MA; Narum SR
    Evol Appl; 2019 Mar; 12(3):456-469. PubMed ID: 30828367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding.
    Milot E; Perrier C; Papillon L; Dodson JJ; Bernatchez L
    Evol Appl; 2013 Apr; 6(3):472-85. PubMed ID: 23745139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild.
    Araki H; Cooper B; Blouin MS
    Science; 2007 Oct; 318(5847):100-3. PubMed ID: 17916734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive genetic plan for a captive population of the Chinese goral (Naemorhedus griseus) and prescriptive action for ex situ and in situ conservation management in Thailand.
    Jangtarwan K; Kamsongkram P; Subpayakom N; Sillapaprayoon S; Muangmai N; Kongphoemph A; Wongsodchuen A; Intapan S; Chamchumroon W; Safoowong M; Peyachoknagul S; Duengkae P; Srikulnath K
    PLoS One; 2020; 15(6):e0234064. PubMed ID: 32497115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrospective analysis of hibernation parameters and breeding success in captive Vancouver Island marmots (Marmota vancouverensis): 1997-2018.
    Aymen J; Freedman M; Delnatte P; McAdie M; Beaufrère H
    Zoo Biol; 2021 Jul; 40(4):273-279. PubMed ID: 33848361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inbreeding and selection shape genomic diversity in captive populations: Implications for the conservation of endangered species.
    Willoughby JR; Ivy JA; Lacy RC; Doyle JM; DeWoody JA
    PLoS One; 2017; 12(4):e0175996. PubMed ID: 28423000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity.
    O'Sullivan RJ; Aykanat T; Johnston SE; Rogan G; Poole R; Prodöhl PA; de Eyto E; Primmer CR; McGinnity P; Reed TE
    Proc Biol Sci; 2020 Oct; 287(1937):20201671. PubMed ID: 33081620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk assessment of inbreeding and outbreeding depression in a captive-breeding program.
    Rollinson N; Keith DM; Houde AL; Debes PV; McBride MC; Hutchings JA
    Conserv Biol; 2014 Apr; 28(2):529-40. PubMed ID: 24476089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of reproductive parameters of female Amur tigers (Panthera tigris altaica) in the wild and captivity.
    Gu J; Guo Y; Stott P; Jiang G; Ma J
    Integr Zool; 2016 Jan; 11(1):33-9. PubMed ID: 26663661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.