These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28499095)

  • 21. Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells.
    Irnaten M; Barry RC; Quill B; Clark AF; Harvey BJ; O'Brien CJ
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):194-202. PubMed ID: 18775862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands.
    Sobhan U; Sato M; Shinomiya T; Okubo M; Tsumura M; Muramatsu T; Kawaguchi M; Tazaki M; Shibukawa Y
    Cell Tissue Res; 2013 Nov; 354(2):507-19. PubMed ID: 23942896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca(2+)-activated K+ channels are involved in regulatory volume decrease in acinar cells isolated from the rat lacrimal gland.
    Park KP; Beck JS; Douglas IJ; Brown PD
    J Membr Biol; 1994 Aug; 141(2):193-201. PubMed ID: 7807520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats.
    Ducret T; El Arrouchi J; Courtois A; Quignard JF; Marthan R; Savineau JP
    Cell Calcium; 2010 Nov; 48(5):251-9. PubMed ID: 21035852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular Ca2+ signaling induced by osmotic shock in human T lymphocytes.
    Schlichter LC; Sakellaropoulos G
    Exp Cell Res; 1994 Nov; 215(1):211-22. PubMed ID: 7957671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium-calcium exchangers in mouse odontoblasts.
    Sato M; Sobhan U; Tsumura M; Kuroda H; Soya M; Masamura A; Nishiyama A; Katakura A; Ichinohe T; Tazaki M; Shibukawa Y
    J Endod; 2013 Jun; 39(6):779-87. PubMed ID: 23683279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of chondrocyte regulatory volume decrease (RVD) by [Ca2+]i and cell shape.
    Kerrigan MJ; Hall AC
    Osteoarthritis Cartilage; 2008 Mar; 16(3):312-22. PubMed ID: 17855127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of chloride channels in regulating the volume of acinar cells of the rabbit superior lacrimal gland.
    Herok GH; Millar TJ; Anderton PJ; Martin DK
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5517-25. PubMed ID: 19037000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increases in intracellular pH and Ca(2+) are essential for K(+) channel activation after modest 'physiological' swelling in villus epithelial cells.
    MacLeod RJ; Hamilton JR
    J Membr Biol; 1999 Nov; 172(1):47-58. PubMed ID: 10552013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of calcium in volume-activated chloride currents in a mouse cholangiocyte cell line.
    Chen B; Nicol G; Cho WK
    J Membr Biol; 2007 Jan; 215(1):1-13. PubMed ID: 17483866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of hypotonicity on large-conductance calcium-activated potassium channels in human retinal pigment epithelial cells.
    Sheu SJ; Wu SN; Hu DN; Chen JF
    J Ocul Pharmacol Ther; 2004 Dec; 20(6):563-75. PubMed ID: 15684815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathways signaling the regulatory volume decrease of cultured nonpigmented ciliary epithelial cells.
    Civan MM; Coca-Prados M; Peterson-Yantorno K
    Invest Ophthalmol Vis Sci; 1994 May; 35(6):2876-86. PubMed ID: 8188483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TRPV4 exhibits a functional role in cell-volume regulation.
    Becker D; Blase C; Bereiter-Hahn J; Jendrach M
    J Cell Sci; 2005 Jun; 118(Pt 11):2435-40. PubMed ID: 15923656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of Piezo2 in Schwann Cell Volume Regulation and Its Impact on Neurotrophic Release Regulation.
    Suttinont C; Maeno K; Yano M; Sato-Numata K; Numata T; Tsutsumi M
    Cell Physiol Biochem; 2024 Jul; 58(4):292-310. PubMed ID: 38973197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TRPM7 is an essential regulator for volume-sensitive outwardly rectifying anion channel.
    Numata T; Sato-Numata K; Hermosura MC; Mori Y; Okada Y
    Commun Biol; 2021 May; 4(1):599. PubMed ID: 34017036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of volume-stimulated osmolyte and anion channels in volume regulation by mammalian sperm.
    Petrunkina AM; Harrison RA; Ekhlasi-Hundrieser M; Töpfer-Petersen E
    Mol Hum Reprod; 2004 Nov; 10(11):815-23. PubMed ID: 15361553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of hypotonic shock on cultured pavement cells from freshwater or seawater rainbow trout gills.
    Leguen I; Prunet P
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):259-69. PubMed ID: 15123200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increase in muscarinic stimulation-induced Ca(2+) response by adenovirus-mediated Stim1-mKO1 gene transfer to rat submandibular acinar cells in vivo.
    Morita T; Nezu A; Tojyo Y; Tanimura A
    Biochem Biophys Res Commun; 2013 Oct; 439(4):433-7. PubMed ID: 23998931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QCM sensor provides insight into the role of pivotal ions in cellular regulatory volume decrease.
    Yang P; Bao S; Xiao S; Feng J; Lu X
    Anal Bioanal Chem; 2023 Jan; 415(2):245-254. PubMed ID: 36399229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium signaling in cell volume regulation.
    McCarty NA; O'Neil RG
    Physiol Rev; 1992 Oct; 72(4):1037-61. PubMed ID: 1332089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.