These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 28499177)
1. The dechlorination of pentachlorophenol under a sulfate and iron reduction co-occurring anaerobic environment. Xue L; Feng X; Xu Y; Li X; Zhu M; Xu J; He Y Chemosphere; 2017 Sep; 182():166-173. PubMed ID: 28499177 [TBL] [Abstract][Full Text] [Related]
2. Nitrate supply and sulfate-reducing suppression facilitate the removal of pentachlorophenol in a flooded mangrove soil. Cheng J; Xue L; Zhu M; Feng J; Shen-Tu J; Xu J; Brookes PC; Tang C; He Y Environ Pollut; 2019 Jan; 244():792-800. PubMed ID: 30390452 [TBL] [Abstract][Full Text] [Related]
3. Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading cultures. Yang S; Shibata A; Yoshida N; Katayama A Biotechnol Bioeng; 2009 Jan; 102(1):81-90. PubMed ID: 18683261 [TBL] [Abstract][Full Text] [Related]
4. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction. Yu HY; Wang YK; Chen PC; Li FB; Chen MJ; Hu M; Ouyang X J Environ Manage; 2014 Jan; 132():42-8. PubMed ID: 24286925 [TBL] [Abstract][Full Text] [Related]
5. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z. Xu Y; He Y; Feng X; Liang L; Xu J; Brookes PC; Wu J Sci Total Environ; 2014 Mar; 473-474():215-23. PubMed ID: 24370696 [TBL] [Abstract][Full Text] [Related]
6. Coupling between Pentachlorophenol Dechlorination and Soil Redox As Revealed by Stable Carbon Isotope, Microbial Community Structure, and Biogeochemical Data. Xu Y; He Y; Zhang Q; Xu J; Crowley D Environ Sci Technol; 2015 May; 49(9):5425-33. PubMed ID: 25853431 [TBL] [Abstract][Full Text] [Related]
7. Effect of O Gunawardana B; Swedlund PJ; Singhal N Environ Sci Pollut Res Int; 2019 Sep; 26(27):27687-27698. PubMed ID: 31338765 [TBL] [Abstract][Full Text] [Related]
8. The dechlorination of pentachlorophenol by zerovalent iron in presence of carboxylic acids. Hou M; Wan H; Zhou Q; Liu X; Luo W; Fan Y Bull Environ Contam Toxicol; 2009 Feb; 82(2):137-44. PubMed ID: 19052685 [TBL] [Abstract][Full Text] [Related]
9. Effects of compost-derived humic acid on the bio-dechlorination of pentachlorophenol in high iron content paddy soil. Xiao Y; Lu H; Tan W; Tang J; Wang Y; Shi J; Yu T; Yuan Y Ecotoxicol Environ Saf; 2021 Dec; 227():112900. PubMed ID: 34673405 [TBL] [Abstract][Full Text] [Related]
10. Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0. Jia H; Gu C; Li H; Fan X; Li S; Wang C Environ Sci Pollut Res Int; 2012 Sep; 19(8):3498-505. PubMed ID: 22528999 [TBL] [Abstract][Full Text] [Related]
11. Typical Soil Redox Processes in Pentachlorophenol Polluted Soil Following Biochar Addition. Zhu M; Zhang L; Zheng L; Zhuo Y; Xu J; He Y Front Microbiol; 2018; 9():579. PubMed ID: 29636746 [TBL] [Abstract][Full Text] [Related]
12. Polarity and Molecular Weight of Compost-Derived Humic Acids Impact Bio-dechlorination of Pentachlorophenol. Yuan Y; Xi B; He XS; Tan W; Zhang H; Li D; Yang C; Zhao X J Agric Food Chem; 2019 May; 67(17):4726-4733. PubMed ID: 30964976 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface. Li F; Wang X; Li Y; Liu C; Zeng F; Zhang L; Hao M; Ruan H J Colloid Interface Sci; 2008 May; 321(2):332-41. PubMed ID: 18329661 [TBL] [Abstract][Full Text] [Related]
14. The effects of different types of crop straw on the transformation of pentachlorophenol in flooded paddy soil. Lin J; Meng J; He Y; Xu J; Chen Z; Brookes PC Environ Pollut; 2018 Feb; 233():745-754. PubMed ID: 29127932 [TBL] [Abstract][Full Text] [Related]
15. Dissipation of pentachlorophenol in the aerobic-anaerobic interfaces established by the rhizosphere of rice ( Oryza sativa L.) root. Hayat T; Ding N; Ma B; He Y; Shi J; Xu J J Environ Qual; 2011; 40(6):1722-9. PubMed ID: 22031554 [TBL] [Abstract][Full Text] [Related]
16. Abiotic reductive dechlorination of cis-dichloroethylene by Fe species formed during iron- or sulfate-reduction. Jeong HY; Anantharaman K; Han YS; Hayes KF Environ Sci Technol; 2011 Jun; 45(12):5186-94. PubMed ID: 21595430 [TBL] [Abstract][Full Text] [Related]
17. Changes in the microbial community during repeated anaerobic microbial dechlorination of pentachlorophenol. Tong H; Chen M; Li F; Liu C; Liao C Biodegradation; 2017 Jun; 28(2-3):219-230. PubMed ID: 28357551 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory Effects of Sulfate and Nitrate Reduction on Reductive Dechlorination of PCP in a Flooded Paddy Soil. Xu Y; Xue L; Ye Q; Franks AE; Zhu M; Feng X; Xu J; He Y Front Microbiol; 2018; 9():567. PubMed ID: 29643842 [TBL] [Abstract][Full Text] [Related]
19. A combination of electrokinetics and Pd/Fe PRB for the remediation of pentachlorophenol-contaminated soil. Li Z; Yuan S; Wan J; Long H; Tong M J Contam Hydrol; 2011 Jun; 124(1-4):99-107. PubMed ID: 21470711 [TBL] [Abstract][Full Text] [Related]
20. Application of bimetallic iron (BioCAT slurry) for pentachlorophenol removal from sandy soil. Dien NT; De Windt W; Buekens A; Chang MB J Hazard Mater; 2013 May; 252-253():83-90. PubMed ID: 23500793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]