BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 28499260)

  • 21. Sensitivity of the glochidia (larvae) of freshwater mussels (Bivalvia: Unionida: Hyriidae) to cadmium, cobalt, copper, lead, nickel and zinc: Differences between metals, species and exposure time.
    Markich SJ
    Sci Total Environ; 2017 Dec; 601-602():1427-1436. PubMed ID: 28605861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feeding inhibition following in-situ and laboratory exposure as an indicator of ecotoxic impacts of wildfires in affected waterbodies.
    Ré A; Campos I; Puga J; Keizer JJ; Gonçalves FJM; Pereira JL; Abrantes N
    Aquat Toxicol; 2020 Oct; 227():105587. PubMed ID: 32841885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term effects and recovery of streams from acid mine drainage and evaluation of toxic metal threshold ranges for macroinvertebrate community reassembly.
    Herbst DB; Medhurst RB; Black NJP
    Environ Toxicol Chem; 2018 Oct; 37(10):2575-2592. PubMed ID: 29939422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uranium toxicity to aquatic invertebrates: A laboratory assay.
    Bergmann M; Sobral O; Pratas J; Graça MAS
    Environ Pollut; 2018 Aug; 239():359-366. PubMed ID: 29674214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of heavy metals on riverine benthic macroinvertebrate assemblages with reference to potential food availability for drift-feeding fishes.
    Iwasaki Y; Kagaya T; Miyamoto K; Matsuda H
    Environ Toxicol Chem; 2009 Feb; 28(2):354-63. PubMed ID: 18754701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper-zinc coergisms and metal toxicity at predefined ratio concentrations: Predictions based on synergistic ratio model.
    Obinna Obiakor M; Damian Ezeonyejiaku C
    Ecotoxicol Environ Saf; 2015 Jul; 117():149-54. PubMed ID: 25863353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity of a tropical micro-crustacean (Daphnia lumholtzi) to trace metals tested in natural water of the Mekong River.
    Dao TS; Le VN; Bui BT; Dinh KV; Wiegand C; Nguyen TS; Dao CT; Nguyen VD; To TH; Nguyen LS; Vo TG; Vo TM
    Sci Total Environ; 2017 Jan; 574():1360-1370. PubMed ID: 27528484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation trial of Japan's zinc water quality standard for aquatic life using field data.
    Matsuzaki K
    Ecotoxicol Environ Saf; 2011 Oct; 74(7):1808-23. PubMed ID: 21851980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caddisfly Assemblages in Metal Contaminated Rivers of the Tikhaya Basin, East Kazakhstan.
    Yanygina LV; Evseeva AA
    Bull Environ Contam Toxicol; 2019 Mar; 102(3):316-322. PubMed ID: 30726511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response of macroinvertebrates to copper and zinc in a stream mesocosm.
    Hickey CW; Golding LA
    Environ Toxicol Chem; 2002 Sep; 21(9):1854-63. PubMed ID: 12206425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution, diffusive fluxes, and toxicity of heavy metals and PAHs in pore water profiles from the northern bays of Taihu Lake.
    Lei P; Zhang H; Shan B; Zhang B
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22072-22083. PubMed ID: 27541153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River watershed, Montana, and the role of colloids in metal uptake.
    Farag AM; Nimick DA; Kimball BA; Church SE; Harper DD; Brumbaugh WG
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):397-409. PubMed ID: 17219028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-phase distribution and comprehensive ecological risk assessment of heavy metal pollutants in a river affected by acid mine drainage.
    Liao J; Ru X; Xie B; Zhang W; Wu H; Wu C; Wei C
    Ecotoxicol Environ Saf; 2017 Jul; 141():75-84. PubMed ID: 28319862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The involvement of metallothionein in the development of aquatic invertebrate.
    Mao H; Wang DH; Yang WX
    Aquat Toxicol; 2012 Apr; 110-111():208-13. PubMed ID: 22343466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A framework for ecological risk assessment of metal mixtures in aquatic systems.
    Nys C; Van Regenmortel T; Janssen CR; Oorts K; Smolders E; De Schamphelaere KAC
    Environ Toxicol Chem; 2018 Mar; 37(3):623-642. PubMed ID: 29135043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review.
    Morrissey CA; Mineau P; Devries JH; Sanchez-Bayo F; Liess M; Cavallaro MC; Liber K
    Environ Int; 2015 Jan; 74():291-303. PubMed ID: 25454246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.
    Scheibener SA; Richardi VS; Buchwalter DB
    Aquat Toxicol; 2016 Feb; 171():20-9. PubMed ID: 26730725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cost of tolerance: sensitivity of stream benthic communities to UV-B and metals.
    Kashian DR; Zuellig RE; Mitchell KA; Clements WH
    Ecol Appl; 2007 Mar; 17(2):365-75. PubMed ID: 17489245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Field data reveal low critical chemical concentrations for river benthic invertebrates.
    Berger E; Haase P; Oetken M; Sundermann A
    Sci Total Environ; 2016 Feb; 544():864-73. PubMed ID: 26706759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of in situ and stream microcosm experiments to assess population- and community-level responses to metals.
    Clark JL; Clements WH
    Environ Toxicol Chem; 2006 Sep; 25(9):2306-12. PubMed ID: 16986784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.