BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28499338)

  • 1. Hyaluronic Acid Molecular Weight-Dependent Modulation of Mucin Nanostructure for Potential Mucosal Therapeutic Applications.
    Hansen IM; Ebbesen MF; Kaspersen L; Thomsen T; Bienk K; Cai Y; Malle BM; Howard KA
    Mol Pharm; 2017 Jul; 14(7):2359-2367. PubMed ID: 28499338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyaluronic acid-coated chitosan nanoparticles: molecular weight-dependent effects on morphology and hyaluronic acid presentation.
    Almalik A; Donno R; Cadman CJ; Cellesi F; Day PJ; Tirelli N
    J Control Release; 2013 Dec; 172(3):1142-50. PubMed ID: 24103813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier.
    Li LD; Crouzier T; Sarkar A; Dunphy L; Han J; Ribbeck K
    Biophys J; 2013 Sep; 105(6):1357-65. PubMed ID: 24047986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyaluronic acid nanoparticles titrate the viscoelastic properties of viscosupplements.
    Fakhari A; Phan Q; Thakkar SV; Middaugh CR; Berkland C
    Langmuir; 2013 Apr; 29(17):5123-31. PubMed ID: 23514620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disassembling the complexity of mucus barriers to develop a fast screening tool for early drug discovery.
    Pacheco DP; Butnarasu CS; Briatico Vangosa F; Pastorino L; Visai L; Visentin S; Petrini P
    J Mater Chem B; 2019 Aug; 7(32):4940-4952. PubMed ID: 31411620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties.
    Mayol L; Quaglia F; Borzacchiello A; Ambrosio L; La Rotonda MI
    Eur J Pharm Biopharm; 2008 Sep; 70(1):199-206. PubMed ID: 18644705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of modified hyaluronic acid in terms of rheology, enzymatic degradation and mucoadhesion.
    Laffleur F; Netsomboon K; Erman L; Partenhauser A
    Int J Biol Macromol; 2019 Feb; 123():1204-1210. PubMed ID: 30465836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mucus barrier-triggered disassembly of siRNA nanocarriers.
    Thomsen TB; Li L; Howard KA
    Nanoscale; 2014 Nov; 6(21):12547-54. PubMed ID: 25179224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rational approach to form disulfide linked mucin hydrogels.
    Joyner K; Song D; Hawkins RF; Silcott RD; Duncan GA
    Soft Matter; 2019 Dec; 15(47):9632-9639. PubMed ID: 31651920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments.
    Kim J; Park Y; Tae G; Lee KB; Hwang CM; Hwang SJ; Kim IS; Noh I; Sun K
    J Biomed Mater Res A; 2009 Mar; 88(4):967-75. PubMed ID: 18384163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of hyaluronic acid with mucin, evaluated by gel permeation chromatography.
    Saso L; Bonanni G; Grippa E; Gatto MT; Leone MG; Silvestrini B
    Res Commun Mol Pathol Pharmacol; 1999; 104(3):277-84. PubMed ID: 10741378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier.
    Pereira de Sousa I; Cattoz B; Wilcox MD; Griffiths PC; Dalgliesh R; Rogers S; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):257-64. PubMed ID: 25661320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barrier properties of gastrointestinal mucus to nanoparticle transport.
    Crater JS; Carrier RL
    Macromol Biosci; 2010 Dec; 10(12):1473-83. PubMed ID: 20857389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of preparation parameters on ultra low molecular weight chitosan/hyaluronic acid nanoparticles.
    Nazeri N; Avadi MR; Faramarzi MA; Safarian S; Tavoosidana G; Khoshayand MR; Amani A
    Int J Biol Macromol; 2013 Nov; 62():642-6. PubMed ID: 24099942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Condensation of Mucins into Nanoparticles.
    Yan H; Chircov C; Zhong X; Winkeljann B; Dobryden I; Nilsson HE; Lieleg O; Claesson PM; Hedberg Y; Crouzier T
    Langmuir; 2018 Nov; 34(45):13615-13625. PubMed ID: 30350704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering.
    Griffiths PC; Cattoz B; Ibrahim MS; Anuonye JC
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):218-22. PubMed ID: 25986588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental and theoretical approach to understand the interaction between particles and mucosal tissues.
    Arzi RS; Davidovich-Pinhas M; Cohen N; Sosnik A
    Acta Biomater; 2023 Mar; 158():449-462. PubMed ID: 36596435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of mucus on drug transport and its potential to affect therapeutic outcomes.
    Murgia X; Loretz B; Hartwig O; Hittinger M; Lehr CM
    Adv Drug Deliv Rev; 2018 Jan; 124():82-97. PubMed ID: 29106910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The properties of the mucus barrier, a unique gel--how can nanoparticles cross it?
    Pearson JP; Chater PI; Wilcox MD
    Ther Deliv; 2016; 7(4):229-44. PubMed ID: 27010985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.