BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28499365)

  • 1. Investigation of DNA repair-related SNPs underlying susceptibility to papillary thyroid carcinoma reveals MGMT as a novel candidate gene in Belarusian children exposed to radiation.
    Lonjou C; Damiola F; Moissonnier M; Durand G; Malakhova I; Masyakin V; Le Calvez-Kelm F; Cardis E; Byrnes G; Kesminiene A; Lesueur F
    BMC Cancer; 2017 May; 17(1):328. PubMed ID: 28499365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of ATM and FOXE1 (TTF2) to risk of papillary thyroid carcinoma in Belarusian children exposed to radiation.
    Damiola F; Byrnes G; Moissonnier M; Pertesi M; Deltour I; Fillon A; Le Calvez-Kelm F; Tenet V; McKay-Chopin S; McKay JD; Malakhova I; Masyakin V; Cardis E; Lesueur F; Kesminiene A
    Int J Cancer; 2014 Apr; 134(7):1659-68. PubMed ID: 24105688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Germline Variants in DNA Repair Genes, Diagnostic Radiation, and Risk of Thyroid Cancer.
    Sandler JE; Huang H; Zhao N; Wu W; Liu F; Ma S; Udelsman R; Zhang Y
    Cancer Epidemiol Biomarkers Prev; 2018 Mar; 27(3):285-294. PubMed ID: 29263185
    [No Abstract]   [Full Text] [Related]  

  • 4. Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma.
    Akulevich NM; Saenko VA; Rogounovitch TI; Drozd VM; Lushnikov EF; Ivanov VK; Mitsutake N; Kominami R; Yamashita S
    Endocr Relat Cancer; 2009 Jun; 16(2):491-503. PubMed ID: 19286843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl.
    Takahashi M; Saenko VA; Rogounovitch TI; Kawaguchi T; Drozd VM; Takigawa-Imamura H; Akulevich NM; Ratanajaraya C; Mitsutake N; Takamura N; Danilova LI; Lushchik ML; Demidchik YE; Heath S; Yamada R; Lathrop M; Matsuda F; Yamashita S
    Hum Mol Genet; 2010 Jun; 19(12):2516-23. PubMed ID: 20350937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single nucleotide polymorphisms of ataxia telangiectasia mutated and the risk of papillary thyroid carcinoma.
    Song CM; Kwon TK; Park BL; Ji YB; Tae K
    Environ Mol Mutagen; 2015 Jan; 56(1):70-6. PubMed ID: 25196645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association between x-ray repair cross-complementing group 3 (XRCC3) genetic polymorphisms and papillary thyroid cancer susceptibility in a Chinese Han population.
    Yuan K; Huo M; Sun Y; Wu H; Chen H; Wang Y; Fu R
    Tumour Biol; 2016 Jan; 37(1):979-87. PubMed ID: 26264616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphisms in selected DNA repair genes and cell cycle regulating genes involved in the risk of papillary thyroid carcinoma.
    Halkova T; Dvorakova S; Sykorova V; Vaclavikova E; Vcelak J; Vlcek P; Sykorova P; Kodetova D; Betka J; Lastuvka P; Bavor P; Hoch J; Katra R; Bendlova B
    Cancer Biomark; 2016 Jun; 17(1):97-106. PubMed ID: 27314298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of loss of heterozygosity and SNP frequencies in the RET gene in papillary thyroid carcinoma.
    Stephens LA; Powell NG; Grubb J; Jeremiah SJ; Bethel JA; Demidchik EP; Bogdanova TI; Tronko MD; Thomas GA
    Thyroid; 2005 Feb; 15(2):100-4. PubMed ID: 15753666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma.
    Khatami F; Teimoori-Toolabi L; Heshmat R; Nasiri S; Saffar H; Mohammadamoli M; Aghdam MH; Larijani B; Tavangar SM
    J Cell Biochem; 2019 Oct; 120(10):17422-17437. PubMed ID: 31127647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of the ATM gene polymorphisms with papillary thyroid cancer.
    Gu Y; Yu Y; Ai L; Shi J; Liu X; Sun H; Liu Y
    Endocrine; 2014 Apr; 45(3):454-61. PubMed ID: 23925578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from chernobyl pediatric patients.
    Stein L; Rothschild J; Luce J; Cowell JK; Thomas G; Bogdanova TI; Tronko MD; Hawthorn L
    Thyroid; 2010 May; 20(5):475-87. PubMed ID: 19725780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between a promoter polymorphism (rs2192752, -1028A/C) of interleukin 1 receptor, type I (IL1R1) and location of papillary thyroid carcinoma in a Korean population.
    Park SW; Kim MK; Kwon KH; Kim J
    Int J Immunogenet; 2012 Dec; 39(6):501-7. PubMed ID: 22594576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional variations in the ATM gene and susceptibility to differentiated thyroid carcinoma.
    Xu L; Morari EC; Wei Q; Sturgis EM; Ward LS
    J Clin Endocrinol Metab; 2012 Jun; 97(6):1913-21. PubMed ID: 22438227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype Analyses in the Japanese and Belarusian Populations Reveal Independent Effects of rs965513 and rs1867277 but Do Not Support the Role of FOXE1 Polyalanine Tract Length in Conferring Risk for Papillary Thyroid Carcinoma.
    Nikitski AV; Rogounovitch TI; Bychkov A; Takahashi M; Yoshiura KI; Mitsutake N; Kawaguchi T; Matsuse M; Drozd VM; Demidchik Y; Nishihara E; Hirokawa M; Miyauchi A; Rubanovich AV; Matsuda F; Yamashita S; Saenko VA
    Thyroid; 2017 Feb; 27(2):224-235. PubMed ID: 27824288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation.
    Hess J; Thomas G; Braselmann H; Bauer V; Bogdanova T; Wienberg J; Zitzelsberger H; Unger K
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9595-600. PubMed ID: 21606360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults.
    Elisei R; Romei C; Vorontsova T; Cosci B; Veremeychik V; Kuchinskaya E; Basolo F; Demidchik EP; Miccoli P; Pinchera A; Pacini F
    J Clin Endocrinol Metab; 2001 Jul; 86(7):3211-6. PubMed ID: 11443191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variants in the ATM-CHEK2-BRCA1 axis determine genetic predisposition and clinical presentation of papillary thyroid carcinoma.
    Wójcicka A; Czetwertyńska M; Świerniak M; Długosińska J; Maciąg M; Czajka A; Dymecka K; Kubiak A; Kot A; Płoski R; de la Chapelle A; Jażdżewski K
    Genes Chromosomes Cancer; 2014 Jun; 53(6):516-23. PubMed ID: 24599715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variants in MGMT and risk of lung cancer in Southeastern Chinese: a haplotype-based analysis.
    Hu Z; Wang H; Shao M; Jin G; Sun W; Wang Y; Liu H; Wang Y; Ma H; Qian J; Jin L; Wei Q; Lu D; Huang W; Shen H
    Hum Mutat; 2007 May; 28(5):431-40. PubMed ID: 17285603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of transcriptomic signature of post-Chernobyl and postradiotherapy thyroid tumors.
    Ory C; Ugolin N; Hofman P; Schlumberger M; Likhtarev IA; Chevillard S
    Thyroid; 2013 Nov; 23(11):1390-400. PubMed ID: 23521174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.