These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 28499769)
21. Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Deller S; Sollner S; Trenker-El-Toukhy R; Jelesarov I; Gübitz GM; Macheroux P Biochemistry; 2006 Jun; 45(23):7083-91. PubMed ID: 16752898 [TBL] [Abstract][Full Text] [Related]
22. Differential stabilization of the three FMN redox forms by tyrosine 94 and tryptophan 57 in flavodoxin from Anabaena and its influence on the redox potentials. Lostao A; Gómez-Moreno C; Mayhew SG; Sancho J Biochemistry; 1997 Nov; 36(47):14334-44. PubMed ID: 9398151 [TBL] [Abstract][Full Text] [Related]
23. Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134. Belchik SM; Xun L J Bacteriol; 2008 Mar; 190(5):1615-9. PubMed ID: 18165297 [TBL] [Abstract][Full Text] [Related]
24. 1.2 Å resolution crystal structure of Escherichia coli WrbA holoprotein. Kishko I; Carey J; Reha D; Brynda J; Winkler R; Harish B; Guerra R; Ettrichova O; Kukacka Z; Sheryemyetyeva O; Novak P; Kuty M; Kuta Smatanova I; Ettrich R; Lapkouski M Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1748-57. PubMed ID: 23999298 [TBL] [Abstract][Full Text] [Related]
26. Quinone reductase acts as a redox switch of the 20S yeast proteasome. Sollner S; Schober M; Wagner A; Prem A; Lorkova L; Palfey BA; Groll M; Macheroux P EMBO Rep; 2009 Jan; 10(1):65-70. PubMed ID: 19029946 [TBL] [Abstract][Full Text] [Related]
27. LuxG is a functioning flavin reductase for bacterial luminescence. Nijvipakul S; Wongratana J; Suadee C; Entsch B; Ballou DP; Chaiyen P J Bacteriol; 2008 Mar; 190(5):1531-8. PubMed ID: 18156264 [TBL] [Abstract][Full Text] [Related]
28. The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans. Sedláček V; Klumpler T; Marek J; Kučera I PLoS One; 2014; 9(5):e96262. PubMed ID: 24817153 [TBL] [Abstract][Full Text] [Related]
29. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates. Nivière V; Vanoni MA; Zanetti G; Fontecave M Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311 [TBL] [Abstract][Full Text] [Related]
30. Crystal structure of ChrR--a quinone reductase with the capacity to reduce chromate. Eswaramoorthy S; Poulain S; Hienerwadel R; Bremond N; Sylvester MD; Zhang YB; Berthomieu C; Van Der Lelie D; Matin A PLoS One; 2012; 7(4):e36017. PubMed ID: 22558308 [TBL] [Abstract][Full Text] [Related]
31. MSMEG_3955 from Mycobacterium smegmatis is a FMN bounded homotrimeric NAD(P)H:Flavin mononucleotide (FMN) oxidoreductase. Khosla N; Thayil SM; Kaur R; Kesavan AK BMC Microbiol; 2021 Nov; 21(1):319. PubMed ID: 34798816 [TBL] [Abstract][Full Text] [Related]
32. Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution. Hrovat A; Blümel M; Löhr F; Mayhew SG; Rüterjans H J Biomol NMR; 1997 Jul; 10(1):53-62. PubMed ID: 9335116 [TBL] [Abstract][Full Text] [Related]
33. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes. Cui K; Ma Q; Lu AY; Yang CS Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087 [TBL] [Abstract][Full Text] [Related]
34. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials. Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792 [TBL] [Abstract][Full Text] [Related]
35. Oxidative stress-induced structural changes in the microtubule-associated flavoenzyme Irc15p from Saccharomyces cerevisiae. Koch K; Strandback E; Jha S; Richter G; Bourgeois B; Madl T; Macheroux P Protein Sci; 2019 Jan; 28(1):176-190. PubMed ID: 30267443 [TBL] [Abstract][Full Text] [Related]
36. Crystal structure of Escherichia coli SsuE: defining a general catalytic cycle for FMN reductases of the flavodoxin-like superfamily. Driggers CM; Dayal PV; Ellis HR; Karplus PA Biochemistry; 2014 Jun; 53(21):3509-19. PubMed ID: 24816272 [TBL] [Abstract][Full Text] [Related]
37. The structures of E. coli NfsA bound to the antibiotic nitrofurantoin; to 1,4-benzoquinone and to FMN. Day MA; Jarrom D; Christofferson AJ; Graziano AE; Anderson JLR; Searle PF; Hyde EI; White SA Biochem J; 2021 Jul; 478(13):2601-2617. PubMed ID: 34142705 [TBL] [Abstract][Full Text] [Related]
38. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions. Druhan LJ; Swenson RP Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679 [TBL] [Abstract][Full Text] [Related]
39. Kinetic mechanism and quaternary structure of Aminobacter aminovorans NADH:flavin oxidoreductase: an unusual flavin reductase with bound flavin. Russell TR; Demeler B; Tu SC Biochemistry; 2004 Feb; 43(6):1580-90. PubMed ID: 14769034 [TBL] [Abstract][Full Text] [Related]
40. Studies on NADH (NADPH)-cytochrome c reductase (FMN-containing) from yeast. Isolation and physicochemical properties of the enzyme from top-fermenting ale yeast. Johnson MS; Kuby SA J Biol Chem; 1985 Oct; 260(22):12341-50. PubMed ID: 3930493 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]