These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28499873)

  • 1. Inhibition of bioluminescence in the living gills of the luminous fungus Mycena chlorophos by trans-4-aminocinnamic acid.
    Teranishi K
    Biochem Biophys Res Commun; 2017 Jun; 488(2):335-339. PubMed ID: 28499873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second bioluminescence-activating component in the luminous fungus Mycena chlorophos.
    Teranishi K
    Luminescence; 2017 Mar; 32(2):182-189. PubMed ID: 27271205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-3-hydroxyhispidin is not an actual bioluminescence substrate in pileus gills of the luminous fungus Mycena chlorophos.
    Teranishi K
    Biochem Biophys Res Commun; 2018 Sep; 504(1):190-195. PubMed ID: 30172376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combination of NADHP and hispidin is not essential for bioluminescence in luminous fungal living gills of Mycena chlorophos.
    Teranishi K
    Luminescence; 2017 Aug; 32(5):866-872. PubMed ID: 28058809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescence and chemiluminescence abilities of trans-3-hydroxyhispidin on the luminous fungus Mycena chlorophos.
    Teranishi K
    Luminescence; 2018 Nov; 33(7):1235-1242. PubMed ID: 30109785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the bioluminescence system in the pileus of Mycena chlorophos.
    Teranishi K
    Luminescence; 2016 Mar; 31(2):594-599. PubMed ID: 26280456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioluminescence characteristics of the fruiting body of Mycena chlorophos.
    Mori K; Kojima S; Maki S; Hirano T; Niwa H
    Luminescence; 2011; 26(6):604-10. PubMed ID: 21370386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body.
    Oba Y; Suzuki Y; Martins GNR; Carvalho RP; Pereira TA; Waldenmaier HE; Kanie S; Naito M; Oliveira AG; Dörr FA; Pinto E; Yampolsky IV; Stevani CV
    Photochem Photobiol Sci; 2017 Sep; 16(9):1435-1440. PubMed ID: 28766678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of possible light emitters in the gills of a bioluminescent fungus Mycena chlorophos.
    Teranishi K
    Luminescence; 2016 Nov; 31(7):1407-1413. PubMed ID: 27021064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioluminescence characteristics of a tropical terrestrial fungus (Basidiomycetes).
    Deheyn DD; Latz MI
    Luminescence; 2007; 22(5):462-7. PubMed ID: 17610297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lampteromyces bioluminescence--1. Identification of riboflavin as the light emitter in the mushroom L. japonicus.
    Isobe M; Uyakul D; Goto T
    J Biolumin Chemilumin; 1987 May; 1(3):181-8. PubMed ID: 3503527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction and purification of a luminiferous substance from the luminous mushroom Mycena chlorophos.
    Hayashi S; Fukushima R; Wada N
    Biophysics (Nagoya-shi); 2012; 8():111-4. PubMed ID: 27493527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why does the bioluminescent fungus Armillaria mellea have luminous mycelium but nonluminous fruiting body?
    Purtov KV; Petushkov VN; Rodionova NS; Gitelson JI
    Dokl Biochem Biophys; 2017 May; 474(1):217-219. PubMed ID: 28726108
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Ke HM; Lee HH; Lin CI; Liu YC; Lu MR; Hsieh JA; Chang CC; Wu PH; Lu MJ; Li JY; Shang G; Lu RJ; Nagy LG; Chen PY; Kao HW; Tsai IJ
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31267-31277. PubMed ID: 33229585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian control sheds light on fungal bioluminescence.
    Oliveira AG; Stevani CV; Waldenmaier HE; Viviani V; Emerson JM; Loros JJ; Dunlap JC
    Curr Biol; 2015 Mar; 25(7):964-8. PubMed ID: 25802150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sesquiterpenes from the fruiting bodies of Ramaria formosa and their human neutrophil elastase inhibitory activity.
    Kim KC; Lee IS; Yoo ID; Ha BJ
    Chem Pharm Bull (Tokyo); 2015; 63(7):554-7. PubMed ID: 26133070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tylopilusin C, a new diphenolic compound from the fruiting bodies of Tylopilus eximinus.
    Fukuda T; Tomoda H
    J Antibiot (Tokyo); 2013 Jun; 66(6):355-7. PubMed ID: 23612722
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of human neutrophil elastase by labdane diterpenes from the fruiting bodies of Ramaria formosa.
    Lee IS; Kim KC; Yoo ID; Ha BJ
    Biosci Biotechnol Biochem; 2015; 79(12):1921-5. PubMed ID: 26181334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyses of the bioluminescence mechanism in the land snail, Quantula weinkauffiana.
    Yano D; Pholyotha A; Sutcharit C; Tongkerd P; Oba Y; Panha S
    Luminescence; 2024 Jun; 39(6):e4796. PubMed ID: 38850210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steroids and phenolic constituents from the fruiting bodies of the basidiomycete Sarcodon joedes.
    Liu HW; Hu L; Zhang AL; Gao JM
    Nat Prod Res; 2013; 27(1):80-4. PubMed ID: 22320163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.