These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2849991)

  • 1. Preparation and reconstitution with divalent metal ions of class I and class II Clostridium histolyticum apocollagenases.
    Angleton EL; Van Wart HE
    Biochemistry; 1988 Sep; 27(19):7406-12. PubMed ID: 2849991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation by direct metal exchange and kinetic study of active site metal substituted class I and class II Clostridium histolyticum collagenases.
    Angleton EL; Van Wart HE
    Biochemistry; 1988 Sep; 27(19):7413-8. PubMed ID: 2849992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of Zn(II) and Co(II) in the kinetics of inactivation of aminoacylase by 1,10-phenanthroline and reconstitution of the apoenzyme.
    Wu HB; Tsou CL
    Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):435-41. PubMed ID: 8257435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of divalent metal ions on collagenase from Clostridium histolyticum.
    Karakiulakis G; Papadimitriu E; Missirlis E; Maragoudakis ME
    Biochem Int; 1991 Jun; 24(3):397-404. PubMed ID: 1663343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reactivation of apodopamine beta-monooxygenase by vanadyl ions.
    Markossian KA; Paitian NA; Nalbandyan RM
    FEBS Lett; 1988 Oct; 238(2):401-4. PubMed ID: 2844606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide dismutase. Reversible removal of manganese and its substitution by cobalt, nickel or zinc.
    Ose DE; Fridovich I
    J Biol Chem; 1976 Feb; 251(4):1217-8. PubMed ID: 765340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective substitution in vitro of an intrinsic zinc of Escherichia coli RNA polymerase with various divalent metals.
    Chatterji D; Wu FY
    Biochemistry; 1982 Sep; 21(19):4651-6. PubMed ID: 6753922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divalent metal derivatives of the hamster dihydroorotase domain.
    Huang DT; Thomas MA; Christopherson RI
    Biochemistry; 1999 Aug; 38(31):9964-70. PubMed ID: 10433703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc metalloenzyme properties of active and latent collagenase from rabbit bone.
    Swann JC; Reynolds JJ; Galloway WA
    Biochem J; 1981 Apr; 195(1):41-9. PubMed ID: 6272747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The copper-enzyme dopamine beta-monooxygenase: studies on the ability of several metals to inhibit the enzyme activity and to replace the copper.
    Skotland T; Flatmark T
    J Inorg Biochem; 1984 Jan; 20(1):61-8. PubMed ID: 6693870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydroquinate synthase: the role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis.
    Bender SL; Mehdi S; Knowles JR
    Biochemistry; 1989 Sep; 28(19):7555-60. PubMed ID: 2514789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal ion interaction with urease and UreD-urease apoproteins.
    Park IS; Hausinger RP
    Biochemistry; 1996 Apr; 35(16):5345-52. PubMed ID: 8611523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One hundred fold increased activity of Aeromonas aminopeptidase by sequential substitutions with Ni(II) or Cu(II) followed by zinc.
    Prescott JM; Wagner FW; Holmquist B; Vallee BL
    Biochem Biophys Res Commun; 1983 Jul; 114(2):646-52. PubMed ID: 6882446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of the coordinate complexes of inositol hexaphosphate with first row transition series cations and Cd(II) with calf intestinal alkaline phosphatase.
    Martin CJ
    J Inorg Biochem; 1995 May; 58(2):89-107. PubMed ID: 7769385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II).
    McCabe JW; Vangala R; Angel LA
    J Am Soc Mass Spectrom; 2017 Dec; 28(12):2588-2601. PubMed ID: 28856622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of common metal ions on the rate of degradation of 4-nitrophenol by a laccase-Cu2+ synergistic system.
    Lu C; Cao L; Liu R; Lei Y; Ding G
    J Environ Manage; 2012 Dec; 113():1-6. PubMed ID: 22967855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The incorporation of divalent metal ions into recombinant human tyrosine hydroxylase apoenzymes studied by intrinsic fluorescence and 1H-NMR spectroscopy.
    Haavik J; Martínez A; Olafsdottir S; Mallet J; Flatmark T
    Eur J Biochem; 1992 Nov; 210(1):23-31. PubMed ID: 1359966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects.
    Coleman JE; Nakamura K; Chlebowski JF
    J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium histolyticum collagenase. II. Partial characterization.
    Soru E; Zaharia O
    Enzymologia; 1972 Jul; 43(1):45-55. PubMed ID: 4340512
    [No Abstract]   [Full Text] [Related]  

  • 20. The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate.
    Hou Z; Mitra B
    J Biol Chem; 2003 Aug; 278(31):28455-61. PubMed ID: 12746428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.