BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28500222)

  • 1. Energy Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose.
    Villar PS; Delgado R; Vergara C; Reyes JG; Bacigalupo J
    J Neurosci; 2017 Jun; 37(23):5736-5743. PubMed ID: 28500222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible ATP trafficking by ATP-shuttles in the olfactory cilia and glucose transfer across the olfactory mucosa.
    Acevedo C; Blanchard K; Bacigalupo J; Vergara C
    FEBS Lett; 2019 Mar; 593(6):601-610. PubMed ID: 30801684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Ca(2+)-activated Cl(-) channel currents recorded from toad olfactory cilia.
    Delgado R; Mura CV; Bacigalupo J
    BMC Neurosci; 2016 Apr; 17(1):17. PubMed ID: 27113933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of Ca2+-dependent K+ channels in chemosensory cilia support a role in odor transduction.
    Delgado R; Saavedra MV; Schmachtenberg O; Sierralta J; Bacigalupo J
    J Neurophysiol; 2003 Sep; 90(3):2022-8. PubMed ID: 12801890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+-activated Cl- channels of the ClCa family express in the cilia of a subset of rat olfactory sensory neurons.
    Gonzalez-Silva C; Vera J; Bono MR; González-Billault C; Baxter B; Hansen A; Lopez R; Gibson EA; Restrepo D; Bacigalupo J
    PLoS One; 2013; 8(7):e69295. PubMed ID: 23874937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cilia- and Flagella-Associated Protein 69 Regulates Olfactory Transduction Kinetics in Mice.
    Talaga AK; Dong FN; Reisert J; Zhao H
    J Neurosci; 2017 Jun; 37(23):5699-5710. PubMed ID: 28495971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CLCA regulatory protein present in the chemosensory cilia of olfactory sensory neurons induces a Ca
    Mura CV; Delgado R; Delgado MG; Restrepo D; Bacigalupo J
    BMC Neurosci; 2017 Aug; 18(1):61. PubMed ID: 28800723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy sources that fuel metabolic processes in protruding finger-like organelles.
    Villar PS; Vergara C; Bacigalupo J
    FEBS J; 2021 Jun; 288(12):3799-3812. PubMed ID: 33142020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The proteome of rat olfactory sensory cilia.
    Mayer U; Küller A; Daiber PC; Neudorf I; Warnken U; Schnölzer M; Frings S; Möhrlen F
    Proteomics; 2009 Jan; 9(2):322-34. PubMed ID: 19086097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odor suppression of voltage-gated currents contributes to the odor-induced response in olfactory neurons.
    Sanhueza M; Bacigalupo J
    Am J Physiol; 1999 Dec; 277(6):C1086-99. PubMed ID: 10600760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma membrane Ca(2+)-ATPase in the cilia of olfactory receptor neurons: possible role in Ca(2+) clearance.
    Castillo K; Delgado R; Bacigalupo J
    Eur J Neurosci; 2007 Nov; 26(9):2524-31. PubMed ID: 17970729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic AMP cascade mediates the inhibitory odor response of isolated toad olfactory receptor neurons.
    Madrid R; Delgado R; Bacigalupo J
    J Neurophysiol; 2005 Sep; 94(3):1781-8. PubMed ID: 15817646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoinositide and Erk signaling pathways mediate activity-driven rodent olfactory sensory neuronal survival and stress mitigation.
    Kim SY; Mammen A; Yoo SJ; Cho B; Kim EK; Park JI; Moon C; Ronnett GV
    J Neurochem; 2015 Aug; 134(3):486-98. PubMed ID: 25903517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular components of signal amplification in olfactory sensory cilia.
    Hengl T; Kaneko H; Dauner K; Vocke K; Frings S; Möhrlen F
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6052-7. PubMed ID: 20231443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of olfactory masking in the sensory cilia.
    Takeuchi H; Ishida H; Hikichi S; Kurahashi T
    J Gen Physiol; 2009 Jun; 133(6):583-601. PubMed ID: 19433623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and molecular Ca2+ microdomains in olfactory cilia support low signaling amplification of odor transduction.
    Castillo K; Restrepo D; Bacigalupo J
    Eur J Neurosci; 2010 Sep; 32(6):932-8. PubMed ID: 20849528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-type Ca2+ channels mediate propagation of odor-induced Ca2+ transients in rat olfactory receptor neurons.
    Gautam SH; Otsuguro KI; Ito S; Saito T; Habara Y
    Neuroscience; 2007 Jan; 144(2):702-13. PubMed ID: 17110049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cilium-attached and excised patch-clamp recordings of odourant-activated Ca-dependent K channels from chemosensory cilia of olfactory receptor neurons.
    Delgado R; Bacigalupo J
    Eur J Neurosci; 2004 Dec; 20(11):2975-80. PubMed ID: 15579151
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.