BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 2850029)

  • 1. Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing.
    Sherman A; Rinzel J; Keizer J
    Biophys J; 1988 Sep; 54(3):411-25. PubMed ID: 2850029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study.
    Keizer J; Magnus G
    Biophys J; 1989 Aug; 56(2):229-42. PubMed ID: 2673420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of single-channel stochastic noise on bursting clusters of pancreatic beta-cells.
    Chay TR; Kang HS
    Biophys J; 1988 Sep; 54(3):427-35. PubMed ID: 2850030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model for synchronization of pancreatic beta-cells by gap junction coupling.
    Sherman A; Rinzel J
    Biophys J; 1991 Mar; 59(3):547-59. PubMed ID: 1646657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bursting electrical activity in pancreatic beta cells caused by Ca(2+)- and voltage-inactivated Ca2+ channels.
    Keizer J; Smolen P
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3897-901. PubMed ID: 1850840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances.
    Kinard TA; de Vries G; Sherman A; Satin LS
    Biophys J; 1999 Mar; 76(3):1423-35. PubMed ID: 10049324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channel sharing in pancreatic beta -cells revisited: enhancement of emergent bursting by noise.
    De Vries G; Sherman A
    J Theor Biol; 2000 Dec; 207(4):513-30. PubMed ID: 11093836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of compartmentalized Ca2+ ions on electrical bursting activity of pancreatic beta-cells.
    Chay TR
    Am J Physiol; 1990 May; 258(5 Pt 1):C955-65. PubMed ID: 2159235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans.
    Stokes CL; Rinzel J
    Biophys J; 1993 Aug; 65(2):597-607. PubMed ID: 8218890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose response to bursting-spiking pancreatic beta-cells by a barrier kinetic model.
    Chay TR
    Biol Cybern; 1985; 52(5):339-49. PubMed ID: 3902101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical studies on the electrical activity of pancreatic beta-cells as a function of glucose.
    Himmel DM; Chay TR
    Biophys J; 1987 Jan; 51(1):89-107. PubMed ID: 3542073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inositol trisphosphate-dependent periodic activation of a Ca(2+)-activated K+ conductance in glucose-stimulated pancreatic beta-cells.
    Ammälä C; Larsson O; Berggren PO; Bokvist K; Juntti-Berggren L; Kindmark H; Rorsman P
    Nature; 1991 Oct; 353(6347):849-52. PubMed ID: 1719424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models.
    Zhang M; Goforth P; Bertram R; Sherman A; Satin L
    Biophys J; 2003 May; 84(5):2852-70. PubMed ID: 12719219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling.
    Tamarina NA; Kuznetsov A; Fridlyand LE; Philipson LH
    Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E578-85. PubMed ID: 16014354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of slow-fast limit cycles in a model for electrical activity in the pancreatic beta-cell.
    Lenbury Y; Kumnungkit K; Novaprateep B
    IMA J Math Appl Med Biol; 1996 Mar; 13(1):1-21. PubMed ID: 8671578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the effect of the intracellular calcium-sensitive K+ channel in the bursting pancreatic beta-cell.
    Chay TR
    Biophys J; 1986 Nov; 50(5):765-77. PubMed ID: 2431725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium Oscillation Frequency-Sensitive Gene Regulation and Homeostatic Compensation in Pancreatic β-Cells.
    Yildirim V; Bertram R
    Bull Math Biol; 2017 Jun; 79(6):1295-1324. PubMed ID: 28497293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiology of islet cells.
    Drews G; Krippeit-Drews P; Düfer M
    Adv Exp Med Biol; 2010; 654():115-63. PubMed ID: 20217497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical bursting and luminal calcium oscillation in excitable cell models.
    Chay TR
    Biol Cybern; 1996 Nov; 75(5):419-31. PubMed ID: 8983163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose metabolism and oscillatory behavior of pancreatic islets.
    Kang H; Jo J; Kim HJ; Choi MY; Rhee SW; Koh DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051905. PubMed ID: 16383643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.