These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2850031)

  • 21. Structural determinants of quaternary ammonium blockers for batrachotoxin-modified Na+ channels.
    Wang GK; Simon R; Bell D; Mok WM; Wang SY
    Mol Pharmacol; 1993 Sep; 44(3):667-76. PubMed ID: 8396721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Open-channel block by internally applied amines inhibits activation gate closure in batrachotoxin-activated sodium channels.
    Zamponi GW; French RJ
    Biophys J; 1994 Sep; 67(3):1040-51. PubMed ID: 7811914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of negative surface charge on toxin binding to canine heart Na channels in planar bilayers.
    Ravindran A; Moczydlowski E
    Biophys J; 1989 Feb; 55(2):359-65. PubMed ID: 2540849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of the mu-conotoxins by [3H]saxitoxin binding assays in neuronal and skeletal muscle sodium channel.
    Floresca CZ
    Toxicol Appl Pharmacol; 2003 Jul; 190(2):95-101. PubMed ID: 12878039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurotoxin-modulated uptake of sodium by highly purified preparations of the electroplax tetrodotoxin-binding glycopeptide reconstituted into lipid vesicles.
    Duch DS; Levinson SR
    J Membr Biol; 1987; 98(1):43-55. PubMed ID: 2444706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconstituted voltage-sensitive sodium channel from Electrophorus electricus: chemical modifications that alter regulation of ion permeability.
    Cooper EC; Tomiko SA; Agnew WS
    Proc Natl Acad Sci U S A; 1987 Sep; 84(17):6282-6. PubMed ID: 2442755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of saxitoxin-sensitive and insensitive sodium channels in cultured neonatal rat astrocytes.
    Yarowsky PJ; Krueger BK
    J Neurosci; 1989 Mar; 9(3):1055-61. PubMed ID: 2538579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Steroidal alkaloid batrachotoxin--instrument for studying voltage-regulated sodium channels].
    Khodorov BI
    Neirofiziologiia; 1985; 17(3):409-22. PubMed ID: 2410800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Activation and inactivation of batrachotoxin-modified sodium channels of nerve fiber membranes in the frog].
    Mozhaeva GN; Naumov AP; Khodorov BI
    Neirofiziologiia; 1984; 16(1):18-26. PubMed ID: 6325958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Action of batrachotoxin on the membrane sodium channels of neuroblastoma cells].
    Zubov AN; Naumov AP; Khodorov BI
    Tsitologiia; 1984 Apr; 26(4):415-23. PubMed ID: 6330944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of cardiac Na+ channels by batrachotoxin: effects on gating, kinetics, and local anesthetic binding.
    Wasserstrom JA; Liberty K; Kelly J; Santucci P; Myers M
    Biophys J; 1993 Jul; 65(1):386-95. PubMed ID: 8396458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH-dependent binding of local anesthetics in single batrachotoxin-activated Na+ channels. Cocaine vs. quaternary compounds.
    Nettleton J; Wang GK
    Biophys J; 1990 Jul; 58(1):95-106. PubMed ID: 2166603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Batrachotoxin-resistant Na+ channels derived from point mutations in transmembrane segment D4-S6.
    Wang SY; Wang GK
    Biophys J; 1999 Jun; 76(6):3141-9. PubMed ID: 10354438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of the mitochondrial peptide-sensitive cationic channel studied in planar bilayers and patches of giant liposomes.
    Thieffry M; Neyton J; Pelleschi M; Fèvre F; Henry JP
    Biophys J; 1992 Aug; 63(2):333-9. PubMed ID: 1384736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of functional sodium channels from cloned cDNA.
    Noda M; Ikeda T; Suzuki H; Takeshima H; Takahashi T; Kuno M; Numa S
    Nature; 1986 Aug 28-Sep 3; 322(6082):826-8. PubMed ID: 2427955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Giant liposomes: a model system in which to obtain patch-clamp recordings of ionic channels.
    Riquelme G; Lopez E; Garcia-Segura LM; Ferragut JA; Gonzalez-Ros JM
    Biochemistry; 1990 Dec; 29(51):11215-22. PubMed ID: 1703012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purified, modified eel sodium channels are active in planar bilayers in the absence of activating neurotoxins.
    Shenkel S; Cooper EC; James W; Agnew WS; Sigworth FJ
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9592-6. PubMed ID: 2556720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of sodium channels with different saxitoxin affinity during rat forebrain development.
    Villegas R; Castillo C; Póo ME; Schnell S; Piernavieja C; Balbi D; Villegas GM
    Brain Res Dev Brain Res; 1994 Aug; 81(1):26-40. PubMed ID: 7805284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The frog interosseal muscle fiber as a new model for patch clamp studies of chemosensitive- and voltage-sensitive ion channels: actions of acetylcholine and batrachotoxin.
    Allen CN; Akaike A; Albuquerque EX
    J Physiol (Paris); 1984; 79(4):338-43. PubMed ID: 6099417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes.
    Kraner SD; Tanaka JC; Barchi RL
    J Biol Chem; 1985 May; 260(10):6341-7. PubMed ID: 2581954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.