BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28500318)

  • 21. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ TEM study of grain growth in nanocrystalline copper thin films.
    Simões S; Calinas R; Vieira MT; Vieira MF; Ferreira PJ
    Nanotechnology; 2010 Apr; 21(14):145701. PubMed ID: 20215662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Below the Hall-Petch Limit in Nanocrystalline Ceramics.
    Ryou H; Drazin JW; Wahl KJ; Qadri SB; Gorzkowski EP; Feigelson BN; Wollmershauser JA
    ACS Nano; 2018 Apr; 12(4):3083-3094. PubMed ID: 29493218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D.
    Yau A; Harder RJ; Kanan MW; Ulvestad A
    ACS Nano; 2017 Nov; 11(11):10945-10954. PubMed ID: 29035558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal and Radiation Stability in Nanocrystalline Cu.
    Thomas M; Salvador H; Clark T; Lang E; Hattar K; Mathaudhu S
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia.
    Dey S; Drazin JW; Wang Y; Valdez JA; Holesinger TG; Uberuaga BP; Castro RH
    Sci Rep; 2015 Jan; 5():7746. PubMed ID: 25582769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the dependence of strength on grain sizes in nanocrystalline materials.
    He W; Bhole SD; Chen D
    Sci Technol Adv Mater; 2008 Jan; 9(1):015003. PubMed ID: 27877940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Grain boundary character distribution of nanocrystalline Cu thin films using stereological analysis of transmission electron microscope orientation maps.
    Darbal AD; Ganesh KJ; Liu X; Lee SB; Ledonne J; Sun T; Yao B; Warren AP; Rohrer GS; Rollett AD; Ferreira PJ; Coffey KR; Barmak K
    Microsc Microanal; 2013 Feb; 19(1):111-9. PubMed ID: 23380005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical spectroscopy of nanocrystalline aluminum films: effects of frequency and grain size on internal friction.
    Sosale G; Almecija D; Das K; Vengallatore S
    Nanotechnology; 2012 Apr; 23(15):155701. PubMed ID: 22436133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.
    He MR; Samudrala SK; Kim G; Felfer PJ; Breen AJ; Cairney JM; Gianola DS
    Nat Commun; 2016 Apr; 7():11225. PubMed ID: 27071458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Irradiation deformation near different atomic grain boundaries in α-Zr: An investigation of thermodynamics and kinetics of point defects.
    Arjhangmehr A; Feghhi SA
    Sci Rep; 2016 Mar; 6():23333. PubMed ID: 27004606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries.
    Uberuaga BP; Bai XM
    J Phys Condens Matter; 2011 Nov; 23(43):435004. PubMed ID: 21960062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advance in orientation microscopy: quantitative analysis of nanocrystalline structures.
    Seyring M; Song X; Rettenmayr M
    ACS Nano; 2011 Apr; 5(4):2580-6. PubMed ID: 21375327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic-scale quantification of grain boundary segregation in nanocrystalline material.
    Herbig M; Raabe D; Li YJ; Choi P; Zaefferer S; Goto S
    Phys Rev Lett; 2014 Mar; 112(12):126103. PubMed ID: 24724663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Processing and Thermal Conductivity of Bulk Nanocrystalline Aluminum Nitride.
    Duarte MA; Mishra V; Dames C; Kodera Y; Garay JE
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal.
    Meraj M; Pal S
    J Mol Model; 2017 Oct; 23(11):309. PubMed ID: 29018998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-healing properties of nanocrystalline materials: a first-principles analysis of the role of grain boundaries.
    Xu J; Liu JB; Li SN; Liu BX; Jiang Y
    Phys Chem Chem Phys; 2016 Jul; 18(27):17930-40. PubMed ID: 27326789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics studies of irradiation effects on hydrogen isotope diffusion through nickel crystals and grain boundaries.
    Zhou XW; Dingreville R; Karnesky RA
    Phys Chem Chem Phys; 2017 Dec; 20(1):520-534. PubMed ID: 29220045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading.
    Luo XM; Zhu XF; Zhang GP
    Nat Commun; 2014; 5():3021. PubMed ID: 24389459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscale engineering of radiation tolerant silicon carbide.
    Zhang Y; Ishimaru M; Varga T; Oda T; Hardiman C; Xue H; Katoh Y; Shannon S; Weber WJ
    Phys Chem Chem Phys; 2012 Oct; 14(38):13429-36. PubMed ID: 22948711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.