These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28500318)

  • 61. Point defect-grain boundary interactions in MgO: an atomistic study.
    Uberuaga BP; Bai XM; Dholabhai PP; Moore N; Duffy DM
    J Phys Condens Matter; 2013 Sep; 25(35):355001. PubMed ID: 23860398
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structural modification of nanocrystalline ceria by ion beams.
    Zhang Y; Edmondson PD; Varga T; Moll S; Namavar F; Lan C; Weber WJ
    Phys Chem Chem Phys; 2011 Jul; 13(25):11946-50. PubMed ID: 21611659
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Conductive Nature of Grain Boundaries in Nanocrystalline Stabilized Bi
    Jeong SJ; Kwak NW; Byeon P; Chung SY; Jung W
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6269-6275. PubMed ID: 29369610
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhanced Thermal Stability of Carbonyl Iron Nanocrystalline Microwave Absorbents by Pinning Grain Boundaries with SiBaFe Alloy Nanoparticles.
    Xu Y; Chen Z; Fu Z; Hu Y; Luo Y; Li W; Guan J
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786825
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field.
    Niu LL; Zhang Y; Shu X; Jin S; Zhou HB; Gao F; Lu GH
    J Phys Condens Matter; 2015 Jul; 27(25):255007. PubMed ID: 26045469
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation.
    Hasnaoui A; Van Swygenhoven H; Derlet PM
    Science; 2003 Jun; 300(5625):1550-2. PubMed ID: 12791986
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microstructural refinement of Al-Si alloy upon ultrasonic nanocrystalline surface modification treatment.
    He Y; Li K; Cho IS; Park IG; Shin K
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8729-34. PubMed ID: 25958593
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Efficient annealing of radiation damage near grain boundaries via interstitial emission.
    Bai XM; Voter AF; Hoagland RG; Nastasi M; Uberuaga BP
    Science; 2010 Mar; 327(5973):1631-4. PubMed ID: 20339070
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.
    Darling KA; Rajagopalan M; Komarasamy M; Bhatia MA; Hornbuckle BC; Mishra RS; Solanki KN
    Nature; 2016 Sep; 537(7620):378-81. PubMed ID: 27629642
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Direct Correlations of Grain Boundary Potentials to Chemical States and Dielectric Properties of Doped CaCu
    Cho A; Han CS; Kang M; Choi W; Lee J; Jeon J; Yu S; Jung YS; Cho YS
    ACS Appl Mater Interfaces; 2018 May; 10(18):16203-16209. PubMed ID: 29658263
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Coarsening in polycrystalline material using quaternions.
    Biswas S; Samajdar I; Haldar A; Sain A
    J Phys Condens Matter; 2011 Feb; 23(7):072202. PubMed ID: 21411872
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance.
    Du C; Jin S; Fang Y; Li J; Hu S; Yang T; Zhang Y; Huang J; Sha G; Wang Y; Shang Z; Zhang X; Sun B; Xin S; Shen T
    Nat Commun; 2018 Dec; 9(1):5389. PubMed ID: 30568181
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry.
    Molnár GY; Shenouda SS; Katona GL; Langer GA; Beke DL
    Beilstein J Nanotechnol; 2016; 7():474-83. PubMed ID: 27335738
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Designing nanomaterials with desired mechanical properties by constraining the evolution of their grain shapes.
    Tengen TB
    Nanoscale Res Lett; 2011 Nov; 6(1):585. PubMed ID: 22067060
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review.
    Liu W; Ji Y; Tan P; Zang H; He C; Yun D; Zhang C; Yang Z
    Materials (Basel); 2016 Feb; 9(2):. PubMed ID: 28787902
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Low-frequency vibrational properties of nanocrystalline materials.
    Derlet PM; Meyer R; Lewis LJ; Stuhr U; Van Swygenhoven H
    Phys Rev Lett; 2001 Nov; 87(20):205501. PubMed ID: 11690482
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mixed conductivity in nanocrystalline highly acceptor doped cerium oxide thin films under oxidizing conditions.
    Göbel MC; Gregori G; Maier J
    Phys Chem Chem Phys; 2011 Jun; 13(23):10940-5. PubMed ID: 21566839
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effect of electronic energy loss on irradiation-induced grain growth in nanocrystalline oxides.
    Zhang Y; Aidhy DS; Varga T; Moll S; Edmondson PD; Namavar F; Jin K; Ostrouchov CN; Weber WJ
    Phys Chem Chem Phys; 2014 May; 16(17):8051-9. PubMed ID: 24651953
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys.
    Lu C; Jin K; Béland LK; Zhang F; Yang T; Qiao L; Zhang Y; Bei H; Christen HM; Stoller RE; Wang L
    Sci Rep; 2016 Feb; 6():19994. PubMed ID: 26829570
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Phase-Field Study of Microstructure Evolution in Tungsten Polycrystalline under He/D Irradiation.
    Han YS
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.